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We present results for the nonequilibrium dynamics of collapse for a model flexible homopolymer on
simple cubic lattices with fixed and fluctuating bonds between the monomers. Results from our Monte
Carlo simulations show that, phenomenologically, the sequence of events observed during the collapse
are independent of the bond criterion. While the growth of the clusters (of monomers) at different
temperatures exhibits a non-universal power-law behavior when the bonds are fixed, the introduction
of fluctuations in the bonds by considering the existence of diagonal bonds produces a tempera-
ture independent growth, which can be described by a universal nonequilibrium finite-size scaling
function with a non-universal metric factor. We also examine the related aging phenomenon, probed
by a suitable two-time density-density autocorrelation function showing a simple power-law scaling
with respect to the growing cluster size. Unlike the cluster-growth exponent @, the nonequilibrium
autocorrelation exponent A¢ governing the aging during the collapse, however, is independent of the
bond type and strictly follows the bounds proposed by Majumder and Janke [Phys. Rev. E 93, 032506
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. INTRODUCTION

Despite their apparent extreme simplification, lattice mod-
els have been proved to be very handy in Monte Carlo
(MC) simulations' providing useful insights into problems
related to various phase transitions, e.g., gas-liquid transi-
tion,” ferromagnetic transition,’ collapse transition of a poly-
mer,*% etc. In particular, the behavior of the static proper-
ties obtained from such simulations of lattice models has
been found to be in fairly good agreement with the corre-
sponding theories and often with experiments. However, the
dynamic properties seem to be largely dependent on the choice
of the model as well as the implemented “local moves.”
In this paper, we aim to understand similar effects in the
nonequilibrium dynamics of the collapse transition of lattice
polymers.

Collapse transition refers to the change in conformation
that a polymer chain, initially in an expanded coil state under
good solvent conditions (or high temperature), experiences
when transferred to a bad solvent (low temperature), where
the equilibrium conformation is globular in nature.””® The
significance of such collapse transition lies in its close associ-
ation with the folding process of certain macromolecules like
proteins.”!? Ever since its introduction, self-avoiding walks
(SAW) on lattices'! have been successfully used to obtain the
critical exponent v related to the size of the polymer,'” i.e.,
the radius of gyration R, ~ NY, where N is the number of
monomers in the polymer chain. Furthermore, by introducing
an attractive interaction for the nearest-neighbor non-bonded
contacts, and conducting MC simulations of such interactive
self-avoiding walk (ISAW) on lattices, one can capture the
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collapse transition as well as the freezing or crystallization.%!3

Thus, on the one hand, the static properties of a polymer in
equilibrium have been quite well studied using lattice as well as
off-lattice models. On the other hand, the dynamic properties
have received less attention. For dynamic studies of poly-
mers, there is a quest'* for a suitable model and appropriate
set of moves that reproduces the well-known Rouse dynam-
ics in equilibrium,'3 valid in the absence of hydrodynamics.
These led to the introduction of bond-fluctuation models'® and
diagonal bond models!”!® that not only reproduce the static
properties correctly but also provide reliable dynamics. How-
ever, the application of such lattice models to understand the
nonequilibrium kinetics of the collapse transition has rarely
been attempted.

Current developments in experimental techniques have
made it a lot easier to monitor a single polymer,'*2? in turn
urging more interests in the dynamics of a single polymer
via computer simulations. In this regard, one can understand
the collapse dynamics of a homopolymer?'~2* by drawing
analogies with usual nonequilibrium coarsening phenomena
of particle or spin systems.’*>> Especially, the scaling of the
growth of monomer clusters formed during the collapse and
the scaling of the two-time density-density autocorrelation
functions (showing aging) are worth mentioning. Phenomeno-
logically, the events that occur during the collapse can be well
described by the “pear-necklace” picture of Halperin and Gold-
bart (HG).%° In accordance with HG, confirmed both in lat-
tice?’ and off-lattice simulations (both without hydrodynam-
ics?1?3 and with hydrodynamics®®2°), the polymer collapse
starts with the formation of small clusters along the chain at
locally higher densities. Those clusters subsequently become
stable and start to coarsen by accumulating monomers from the
connecting bridges. Once those bridges stiffen, clusters start
to coalesce with each other until only a single globular clus-
ter is left. Finally, the monomers within the globule rearrange

Published by AIP Publishing.
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to form an even more compact configuration, minimizing the
surface energy. The growth of the clusters during the coarsen-
ing or coalescence phase of the collapse can be viewed under
the light of well-known ordering or coarsening kinetics. In
earlier studies, the cluster growth was shown to follow a sim-
ple power law: Cs(t) ~ t% (where C4(¢) is the cluster size
at time ¢), and the cluster-growth exponent @, was found to
be 1/2 for lattice polymers®’ and a,. = 2/3 for an off-lattice
model,*° consistent with a Gaussian self-consistent theory.>!
However, recently, in an off-lattice model?!*>? with diffusive
dynamics (in the absence of hydrodynamics) it has been shown
that the average cluster size, C(f), obeys a scaling of the
form

Cs(t) = Co + Ar, (D

where C is the crossover (from the initial cluster-formation
stage to the coarsening stage) cluster size. The corresponding
growth exponent for this model is . = 1, as observed for
Ostwald ripening.>> Moreover, using the scaling form (1) of
the cluster growth, it has been shown that . is independent of
the quench temperatures and the growth can be described by
a universal nonequilibrium finite-size scaling function with a
non-universal metric factor.??

In analogy with the nonequilibrium ordering or coarsening
processes of particle or spin systems, another intriguing fea-
ture observed during the collapse is the presence of aging,’*3*
generally probed by a two-time density-density autocorrela-
tion function C(t, t,) (Where ¢ is the observation time and ¢,, is
the waiting time). In this context, one is particularly interested
in the related dynamic scaling given as

Clt. 1) = Acx < x, = ) @

Co(tw)
Such power-law scaling is reminiscent of the scaling observed
in the Ising model with both nonconserved®*! and con-
served*? order parameter, where the two-time order-parameter
autocorrelation function scales with the ratio of the length
scales at the concerned times. In Refs. 22 and 23, for col-
lapse in an off-lattice model, it has been shown that the value
of the nonequilibrium autocorrelation exponent A¢ ~ 1.25
in (2) is independent of the quench temperature and obeys a
theoretically predicted bound??

(vd-1)<Ac £2(vd - 1), 3)

where d is the dimension and v is the previously dis-
cussed static critical exponent related to the size of the poly-
mer. Such a dimension-dependent bound was first proposed
for aging in ordering spin glasses® and later verified for
spin systems having nonconserved order-parameter dynam-
ics.>” A more general and in fact sharpened bound that also
includes the conserved order-parameter dynamics case was
later proposed in Ref. 43. The bound (3), too, is general
for the collapse of a polymer and, although not yet verified,
expected to be valid in the presence of hydrodynamics as
well.

In spite of the simplicity of implementation, the inves-
tigation of the above-mentioned scaling laws related to the
nonequilibrium dynamics of collapse transition using a lat-
tice model has been ignored so far. Motivated by that, we
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present comparative results from MC simulations of two dif-
ferent lattice models with fixed and fluctuating bonds. With the
primary focus on the various scaling laws related to the col-
lapse, we show that while the model with fixed bonds does not
provide a universal picture of the cluster growth, the model
with fluctuating bonds yields a scaling independent of the
quench temperature. However, the scaling (2) related to aging
is independent of the models considered, indicating a dynamic
universal behavior of aging.

The rest of the paper is organized in the following man-
ner. Next, in Sec. II, we describe the models and the method
of simulation used. Then, in Sec. III, we present our main
results concerning the cluster growth and aging followed by a
discussion and conclusion in Sec. I'V.

Il. MODELS AND METHOD

For our polymer model we consider an ISAW on a simple
cubic lattice with unit lattice constant, fixing the unit of length.
In this model each lattice site can be occupied by a single
monomer. The energies leading to the collapse transition are
governed by the Hamiltonian,

H= —% > wiry), )
i#j 1
where i and j correspond to a non-bonded pair of monomers,
r;; is the Euclidean distance between them, and w(r;) is the
distance-dependent interaction parameter. We use the simplest
case of nearest-neighbor interaction as

€ r,:,- =1
w(ry) = . (%)

0 else

For computational convenience and comparability to previous
works,>** we choose € = 1, which sets the energy, respec-
tively, the temperature scales (the unit of temperature is €/kg,
where the Boltzmann factor kp is set to unity). The Hamil-
tonian given by (4) and (5) favors at low temperature more
and more nearest-neighbor non-bonded contacts, thus facili-
tating a coil-globule transition in the model. For our studies,
we use two different criteria for the bonds connecting the adja-
cent monomers. In one case, we fix the bond distances to 1,
which from now on we refer to as Model 1. In the other case
we allow a fluctuation in the bond length by additionally con-
sidering diagonal bonds, i.e., there the possible bond lengths
are 1, \/5, and V3. This we refer to as Model II. Note that
in both cases the attractive interaction (5) only acts between
monomers located at nearest-neighbor sites. The thermody-
namic properties of Model I are well studied for both the
freezing and collapse transition.® Model IT has its origin from
the bond-fluctuation model of Carmesin and Kremer'® and has
been independently studied both for the static and dynamic
properties in equilibrium.!”-18:43

We introduce the dynamics in the models via Markov
chain Monte Carlo simulation. For Model I a trial move
of a randomly picked monomer in the chain could be an
end-move, corner-move, or the crankshaft-move, depending
on the position of the monomer. Care has to be taken to
preserve the excluded volume condition (no two monomers
can occupy the same lattice site) and to maintain the bond
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connectivity between adjacent monomers. Since in Model
IT we allow a fluctuation in the bond length, a trial move
only consists of local displacement of a randomly picked
monomer with the constraint of preserving the excluded vol-
ume condition and the bond connectivity. For details on the
allowed moves in Model II, we refer to Ref. 18. For both
the models, a trial move is accepted or rejected following
the Metropolis algorithm with the Boltzmann criterion. A
single Monte Carlo step (MCS) consists of N (where N is
the number of monomers in the chain) attempted moves
on randomly picked monomers, effectively setting the time
scale.

The thermodynamic collapse transition temperature is
To(N — o) ~ 3.7 in Model 1.° For Model II there is no
study available that quantifies 7y. We therefore first performed
a set of equilibrium simulations and using multiple-histogram
reweighting*®*7 obtained an estimate of T;(4096) ~ 4.0 for
Model 1II, which is comparatively crude but serves the pur-
pose of indicating the relevant temperature range. For both the
models, we prepare well equilibrated initial configurations at
high temperatures 7, = 6 = 1.5Ty that mimics an extended
coil polymer and then quench it to the globular phase at differ-
ent temperatures T, < Ty. We use chains of length N within
a wide range (512 < N < 8192). By using lattice polymers
we are thereby able to simulate polymers one order of mag-
nitude longer than in the off-lattice simulations performed in
Refs. 21-23.

The time evolution of a single simulation run does depend
of course on the randomly chosen initial polymer configura-
tion in the high-temperature extended coil phase. To arrive at
meaningful results, the data presented are hence averaged over
300 different initial realizations.

lll. NONEQUILIBRIUM DYNAMICS OF THE COLLAPSE
TRANSITION

We now continue with the results and analyses of the
nonequilibrium dynamics of the collapse. In Figs. 1(a) and
1(b), we show the time evolution snapshots of a polymer
quenched to T, = 2.5, for both the models with N = 8192.
Chronologically, the observed events in both the models are
in good accordance with the phenomenological picture of
HG.?% The collapse commences with the formation of nascent-
clusters at sites with relatively higher densities along the
chain. These clusters subsequently start coarsening by pulling
monomers from the chains connecting them and eventually
coalesce with each other, forming bigger clusters. This sec-
ond stage of the collapse finally ends when all the monomers
are in a single cluster. Strikingly one can observe in Fig. 1(b)
that for Model II the coalescence of clusters not only occurs
along the chain but also occurs from the lateral movement of
the clusters. One can attribute this to the choice of much larger
N(= 8192), which at intermediate times gives rise to struc-
tures that resemble branching or a network of “pearls.” Thus
formation of multiple connections for a cluster to other clusters
becomes quite feasible. Although this has not been observed
in any previous simulation,>"?>?7 courtesy of using smaller
N, one must expect that in the thermodynamic limit (N — o)
this could be the real picture.

J. Chem. Phys. 147, 094902 (2017)
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FIG. 1. The decay of the squared radius of gyration for (a) Model I with
fixed bonds and (b) Model II with fluctuating bonds at 7', = 2.5 for polymers
with N = 4096 and 8192. The solid black lines show the results of the fit to
Eq. (7). Additionally we have included for both models exemplary evolution
snapshots of polymer conformations with N = 8192.

Next we investigate the scaling of the relaxation time for
both the models followed by the study of scaling of cluster
coarsening. In the final subsection, we present results related
to aging using a suitable two-time correlation function.

A. Relaxation time

Following the general trend used in most of the dynamic
studies, we start our analyses with the understanding of the
decay of the radius of gyration with time. The squared radius
of gyration

N
R= oo z(ri . ©)
LJ=
where r; is the position of i-th monomer, is a measure of the
spatial extension or size of a polymer. The plots in Figs. 1(a)
and 1(b) show the decay of R§ as a function of time ¢ for Model
I and Model II, respectively. For off-lattice models both with*®
and without hydrodynamics,?? it has been shown that such a
decay of R§ can be well described as

RX(1) = by + by exp [~ (t/7.F°] | ©)

where b corresponds to the value of Ré in the collapse phase,
b and B are two non-trivial fitting parameters, and 7, is a mea-
sure of the relaxation time or the collapse time. In Figs. 1(a)
and 1(b), the solid lines are the corresponding best fits to (7),
showing more or less a consistent behavior. The fits for all poly-
mer lengths provided a reduced chi-squared value y? (y? per
degree-of-freedom) close to unity (see Table I) suggesting (7)
as an appropriate analytic form. For the estimation of the statis-
tical error on the relaxation times 7, from (7), we performed a
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TABLE I. Results obtained from the Jackknife analysis of fits of the form (7)
to the decay of the squared radius of gyration Rg(t), for Model I and Model

II using three different polymer lengths. The reduced chi-squared )(,2 is the
average goodness-of-fit parameter.

N Model e (10° MCS) B X2

2048 I 5.003) 1.23(5) 1.5(2)
4096 I 16(1) 1.22(5) 1.5(2)
8192 I 50(3) 1.23(4) 1.7(3)
2048 I 13.3(8) 1.00(5) 0.5(3)
4096 I 46(3) 1.15(5) 1.3(7)
8192 I 126(4) 1.14(4) 2.0(2)

Jackknife analysis**~" to mitigate the effect of temporal corre-
lations. We note that the stretching exponent S assumes a con-
stant value of 8 ~ 1.2 in Model I, while in Model II we observe
a slight variation from S ~ 1.0 to 8 ~ 1.15 for increasing
N, similar to the behavior observed in the off-lattice polymer
model.?® One can also estimate the collapse time 7. by measur-
ing the time 750 when R2(7) has decayed to [RZ(0) — R2(c0)]/2,
i.e., half of its total decay. The collapse times obtained from the
fitting of Eq. (7) and as 759 are plotted in Figs. 2(a) and 2(b)
for Model I and Model II, respectively. Apparently the data
show a power-law behavior that one can quantify by using the
form

7. = BN* + 19, 8)

where B is a nontrivial constant that may depend on the
quench temperature Ty, z is the corresponding dynamic critical

512 1024 2048 4096 8192
N

tso T T T T , 7 T (b)
b from fit E

107]

\%0"'-

512 1024 2048 4096 8192
N

FIG. 2. Double-log plots showing the scaling of the relaxation time 7.
obtained from two different methods for (a) Model I and (b) Model II at 7;
=2.5. The solid lines are the best fits of (8), with parameters as mentioned in
Table II. The dashed lines represent the Rouse behavior 7. ~ N2, respectively,
the theoretical prediction 7, ~ N3 of Ref. 28.
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exponent, and the offset 1y comes from finite-size correc-
tions. In the absence of hydrodynamics, the Rouse model'”
predicts z = 2 for such relaxation in equilibrium dynamics.
In previous studies of such dynamic exponent in equilibrium
dynamics of a lattice polymer with relatively smaller N, a
value of z ~ 2.1 was reported.’’ The results of fitting the
two different collapse times for both models to the form (8)
are tabulated in Table II. For Model I (Model II), fitting of the
data provides z =~ 1.73 (z = 1.62). These values are somewhat
larger but still compatible with the value (z = 1.5) predicted
in a theory using a coarse-grained picture of the collapsing
polymer in the absence of hydrodynamics.”® Later, we show
a possible algebraic connection of z with the cluster-growth
exponent a..

B. Cluster-growth kinetics

Now, after having an idea on the relaxation times related
to the collapse, we shift our focus to the cluster-growth kinet-
ics. The formation and growth of clusters of monomers bear
certain resemblance with the coarsening of particle or spin
systems.?*23°233 Ag already mentioned, this fact has been
exploited to understand the collapse dynamics in an off-lattice
model polymer.?!>} Following this approach, for the lattice
models considered here, the ordered structures (clusters of
monomers) can be detected. Thus the formation and growth
of clusters can be monitored by measuring the number of
clusters N. and the corresponding size of clusters Cy(¢) as
a function of time during the collapse. The identification of
clusters is achieved by iterating over the polymer and iden-
tifying the number of monomers n; within a distance rpyx
around each monomer i. If this number of monomers n;
exceeds a certain minimum number of monomers (17; > nmin),
then there is said to be a cluster around monomer i contain-
ing all the n; monomers. The overlap of clusters (a single
monomer cannot be part of two or more clusters) introduced
by this method is resolved by assigning overlapping clus-
ters into a single cluster. Different combinations of 7ny,;, and
max produces comparable results in the coarsening regime
of cluster growth for reasonable choices. For the results to
be presented here we opt for nyi, = 10 and rp,x = 2 as
in Ref. 27. Moreover, with the aim of exploiting the advan-
tages of a lattice model to identify ordered structures as
well as to characterize the morphology, we calculate a two-
point equal-time density-density correlation function, defined
as

C(r,1) = pi(0,)pi(r, 1)), ©))

TABLE II. Results obtained from the fits of (8) to the relaxation times 7. for
the full range of data N € [512,8192], using both the models. Here again sz
measures the goodness of fit.

Method Model V4 Xx?

t50 1 1.72(8) 1.61
From fit I 1.73(5) 0.56
150 Il 1.61(5) 1.08
From fit Il 1.62(4) 1.50
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where |
pilr,t) = — > 0, 0). (10)
m; .
Jstij=r

The characteristic function 6 is unity if there is a monomer at
a position r; or zero otherwise. The number of possible lattice
points at distance r from an arbitrary point of the lattice is
denoted by m,, which obviously is dependent on the type of
underlying lattice.

InFig. 3(a) we plot such exemplary C(r, t) at four different
times for Model II quenched to T’y = 2.5. The signature of the
presence of a growing nonequilibrium length scale is clearly
evident as the curves decay farther with the increase in time.
For Model I and different quench temperatures 7', we observe
similar behavior; however, we do not present such plots for
the sake of brevity. Following the exercise prevailed in phase-
ordering business,’*>> we extract an average length scale £(f)
that describes the ordering, i.e., clustering during the collapse,
using the criterion

Clr=L0),t]=h, 1D

where we chose 7 = 0.1. Other values of /4 produce a propor-
tional behavior. For the characteristic length £(#), following the
trend in ordering phenomena studies, one looks for the scaling
of the form

C(r,t) = C(r/L(1)), (12)

where C is the scaling function. The presence of such scaling
is demonstrated in Fig. 3(b), showing the collapse of C(r, r) for
Model II at different times when plotted as function of »/£(¢).

T 5 T
lle tz3.28><10“Hv—| i
P 164 x 106 o ()
08l t~5.24 x 10° o i
’ t~2.62 x 107 —o~

1t~ 3.28 x 107 v £ 5.24 x 10° o 1
@ s . (b)
b a 164 % 106 o0 £~ 2.62 x 107 15

=)
o)
T
=
(=)
H

° Cs(t) —@—
N 3
=06} =103 B
D) 2102
Ogal Z10% e
o
oM, . i
0.2 107° 1072 107 10 101
t (105 MCS)
O L -

1.5 2 2.5 3
r/(t)

FIG. 3. (a) Two-point equal-time correlation function C(r, t), at different
times for Model II. The solid line depicts the extraction of the characteristic
length £(¢) using 2 = 0.1 in (11). (b) The corresponding scaling plots as a
function of r/£(t). The inset of (b) shows the comparison of £(7)° and the
cluster size Cy(f) on a log-log scale. All the results are obtained for N = 4096
monomers for a quench at T, = 2.5. The time ¢ is denoted in units of Monte
Carlo sweeps (MCS).
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Although we do not present it here, Model I shows a similarly
good scaling.

Since the ordering during collapse is manifested by the
formation of the clusters of monomers, the characteristic
length £(#) must be related to the cluster size C,(¢), obtained
via the cluster recognition method such that

Cy(t) o< L), (13)

where dy is the fractal dimension of the clusters. To esti-
mate this fractal dimension, we set the radius of gyration
for each single cluster in relation to its mass (number of
monomers) and obtain dr = 3. In the inset of Fig. 3(b) we
compare £(t)°> with C,(¢) for Model II at quench tempera-
ture T, = 2.5. Apart from a little discrepancy at early times
they seem to be proportional to each other. Based on this
observation, hence, from now onward, we will use £ (t)3 tochar-
acterize the cluster growth. In particular this has advantages
at comparatively higher quench temperatures T,, where the
cluster identification method fails to recognize the final glob-
ular structure as a single cluster for a single chosen set of nyip
and rpax.-

Now, from the scaling of C(r, t) one can easily deduce
the fact that the ordering or rather the cluster growth follows
a power-law scaling £()3 ~ t%. As already mentioned,?!*3
due to the involvement of crossover from the initial cluster
formation stage, the true scaling behavior is described by (1).
We start our quantification by replacing C(¢) with £ (1)}, where
{(¢) is extracted using (11), in (1) to obtain

0ty = €6+ Ar“. (14)

Figure 4 shows the time dependence of £(¢)* for different poly-
mer lengths, as indicated, with the same data shown for only
N = 8192 on a double-log scale in the inset, for (a) Model I
and (b) Model II. The data for different N follow each other
until finite-size effects become apparent. The finite-size effect
creeps in when all the monomers become part of a single clus-
ter, and thereby no further growth is observed. Initially there is
a transition period in the growth (can be seen from the double-
log scale plot), marking the initial stage of cluster formation.
After the initial clusters are formed, the growth crosses over
to the coarsening regime where it indeed shows a power-law
scaling. The data in both cases seem to have a higher slope
than the solid lines with exponent 1/2, as observed in Ref. 27.
We use the form (14) to fit the data, considering the crossover
in the growth. This yields

a. = 0.68(6) for Model I

and
a,. = 0.62(5) for Model II.

1. Temperature-dependence of the cluster growth

Next we turn to a check of the robustness of the kinetics
for both the models, viz., the influence of the quench tem-
perature T,. In simulations of various off-lattice models, it
has been shown that changing temperature correctly repro-
duces the change in solvent quality, with faster collapse as
the temperature decreases.”>*® In contrast, here we find that
a decrease in temperature results in a slower collapse, sim-
ilar to the behavior observed for ordering dynamics of the
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FIG. 4. Plot of the cubed characteristic length £(r)%, as a measure of the
average cluster size, against time for (a) Model I and (b) Model II with N
=2048, 4096, and 8192 quenched to 7; = 2.5. The insets show the data for N
= 8192 on a double-log scale. The solid lines there show power-law behaviors
with exponent 1/2.

Ising model,>* where faster equilibration occurs at higher tem-
perature due to increasing diffusion of particles. In addition,
for low enough temperatures, the system may get trapped in
some metastable state with high energy barrier, quite diffi-
cult to overcome via simple Metropolis dynamics. Thus to
avoid such situations, we restrict ourselves to simulations at
relatively higher temperatures T, € [2.0,2.75].

We show the growth of clusters for Model I at different
T, in the main frame of Fig. 5(a). It is apparent that, within
the chosen range of temperature, the scaling of the growth
is non-universal in nature. On the other hand, for Model II,
shown in the main frame of Fig. 5(b) the growth looks quite
independent of T,. A fitting with the form (14) provides a.
having a wide range [0.5, 0.8] for Model I whereas for Model 11
a much narrower range [0.58, 0.65] is obtained. In this regard,
we also calculate the instantaneous exponent a.(f) given as

dn @)
=— 1
@e(t) = —7 ==, (15)
which when operated on (14) yields
3
_ 0
ac(t) = a. [1 - M . (16)

Thus a plot of a.(t) against 1/£()* would provide the asymp-
totic . in the limit 1/£(r)> — 0. In the insets of Figs. 5(a)
and 5(b) we show such plots of a.(¢) for the respective
models. The asymptotic behavior clearly indicates that the
growth in Model II is of more universal nature. Like in
Model I, temperature-dependent growth exponents were ear-
lier observed in quenches of an Edwards-Anderson spin glass

J. Chem. Phys. 147, 094902 (2017)
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FIG. 5. Double-log plot showing the dependence of the cluster growth on the
quench temperature 7', in (a) Model I and (b) Model 11, measured as L)}
for N = 4096. The inset shows the respective time-dependent instantaneous
exponent «,(t) calculated as described in Eq. (15).

in d = 3, in an anisotropic rotor model with vacancies®

as well as in disordered ferromagnets.’’>° This connection
might be reasonable, as all the concerned systems are domi-
nated by disorder and constraints of the lattice structure. On
the other hand, perhaps the introduction of bond fluctuation
due to consideration of the diagonal bonds helps to over-
come the topological constraints of the lattice to some extent,
hence, a temperature-independent growth at moderately high
temperatures.

For both models the growth exponent is smaller than in
the off-lattice model where @, ~ 1.2 For Model I, how-
ever, the value of a, is not universal, as the growth exponent
appears to be dependent on the quench temperature T';. The
value obtained for Model II already gives an indication for a
different (temperature-independent) growth exponent than 1/2
as reported in Ref. 27. For further investigation we call for a
nonequilibrium finite-size scaling analysis for Model II.

2. Finite-size scaling analysis

Using a finite-size scaling analysis one aims at extracting
quantities in the thermodynamic limit (N — oco) from simula-
tions of a finite size. In simulations we necessarily have finite
systems and thus this analysis method has its wide applica-
tion in the context of critical phenomena.®’ Later finite-size
scaling has also been successfully adapted to the nonequilib-
rium scenario to understand the growth exponents in particle®!
and spin°>? systems. Here, we rely on such an exercise pre-
viously performed in more detail for the off-lattice model
in Ref. 23. This method was applied successfully to under-
stand the collapse dynamics. The finite-size scaling ansatz is
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constructed by generalizing Eq. (14) to additionally include an
initial crossover time 7,

€@ty = 6+ At - 19)™. (17)

The values of £y and #y are marking the point after which
the coarsening regime starts and are analogous to the back-
ground contribution in critical phenomena. Following Ref. 23,
we identify the linear cluster size £(f) (~Cy(r)'/3) with the
equilibrium correlation length &, and 1/t with the tempera-
ture deviation from a critical point. In order to account for the

finite-size effect in (17), one can write down?
1) = €3 = (bmax = L)Y (), (18)
with the finite-size scaling function
£(1)3 - 6’(3)
YOy) = ——> 19
0= —a (19)

and the scaling variable

T
_ G~ )
=1
Note thatin (18)—(20) £ 1nax is the saturation value of £(¢), which
one obtains when all the monomers of the polymer are in a
single dense globular cluster, and does not need to be equal

to N3, but rather proportional, £y ~ N'/3. In the finite-size
unaffected regime, the form (17) is recovered, providing

Y(y) oc y™%, 21)

while in the finite-size affected regime one must obtain Y (y) —
1. In the finite-size scaling exercise, we tune the value of «,
to obtain an optimum collapse of data for different N, obey-
ing the master curve behavior (21). From the fitting exercise
done in Sec. III B 1, we have a fair idea about ;. We chose
{’(3) ~ 16 and tp ~ 200 for Model II, independent of N. The
exercise yields a reasonably good collapse of data and corre-
sponding master curve behavior with o, = 0.62(3) for Model
I, in agreement with the direct fit. In Fig. 6 we present a repre-
sentative plot for Model II. The corresponding plot for Model
I is omitted due to the quench-temperature dependency. On
one hand, the value obtained is different from the previously
reported value of 1/2 for a lattice polymer.”’” On the other
hand @, =~ 2/3 is comparable with the value predicted for an

y (20)

10

10723
N = 2048
N = 4096 —&—
N =8192 +—A—
10* 1 1 1 1
102 1071 10° 10t 102 10®

Y

FIG. 6. Finite-size scaling plot for Model Il at T, = 2.5 using the ansatz (17).
The solid line corresponds to the expected power-law decay with an exponent
a. = 0.62.
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off-lattice model via Gaussian self-consistent theory,31 con-
firmed by Langevin dynamic simulations.’® On the contrary,
for a similar off-lattice model, however, one observes a linear
cluster growth?!:?3 as observed for Ostwald ripening (corre-
sponding to the Ostwald exponent 1/3 when considering the
length scale). Now, by using the fact that at the point of onset
of finite-size effects £(f)> ~ N and by replacing the corre-
sponding time 7 as the collapse time 7., one can show>? from
(19) and (20) that z = 1/a,. This relation holds quite nicely
for Model II as it yields z = 1.61, consistent with the behavior
shown in Fig. 2 and Table II.

3. Temperature-dependent scaling of the cluster growth

To further look into the universal nature of the scaling in
Model II, we apply a modified scaling analysis based on the
above discussed finite-size scaling analysis. Here we account
for the different growth amplitudes by modifying the scaling
variable (20) as??

1
(B — 03)2c
Yp =fs%, (22)

with a metric factor depending on the growth amplitudes,

Aabzzm)é o3

5= (5

Note that y, differs from y only by this factor f. A fitting of
the a.(¢) presented in the inset of Fig. 5(b) to the scaling law
(16) provides a rough estimate of 5(3) = 16 + 2 for all quench
temperatures, consistent with the previously mentioned value
of 58 ~ 16 for the polymer quenched to T, = 2.5. We use this
value of £ 3 and the corresponding # values in the scaling exer-
cise and tune the value of a. such that the data for different 7',
collapse onto a single master curve for appropriate adjustments
of the metric factor f', i.e., the ratio of amplitudes. Recall that
an appropriate choice of @, should lead to a consistent power-
law behavior of the finite-size scaling function as Y (y,) ~ y;a”
along with optimum data collapse. In our exercise we obtained
such behavior for @, = 0.62(4). In Fig. 7, we show such a rep-
resentative plot for @, = 0.62. The successful application of
such a scaling exercise thus indicates that indeed the scaling
of cluster growth in the Model II is nearly universal in nature
which can be described by a universal finite-size scaling func-
tion with a non-universal metric factor. This observation has

10° ]

1072k T, = 2.00
T, =2.25
T, = 2.50
T, =2.75
10*3 I I I
1072 107! 10° 10° 102 10°

FIG. 7. Scaling plot for Model II for different quench temperatures 7'y, where
fs is the metric factor defined in Eq. (23). The solid line corresponds to a
power-law function with exponent @, = 0.62.
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recently been made in an off-lattice model,2"23 however, for a
linear scaling of the cluster growth.

C. Aging and related scaling

Until now, our focus has been solely on equal-time quan-
tities governing the kinetics. Here, in this subsection we turn
our attention to the behavior of a two-time quantity, used to
probe aging in an evolving nonequilibrium system. Using the
framework recently developed for an off-lattice model,?>2%62
we construct the two-time correlation function as

C(t, 1) = (0i(10i(tw)) = (0i(1)XOi(tw)). (24)

We assign O; = +1 by checking the radius r, at which the
local density, given by p;(r,t) [see Egs. (9) and (10)], first
falls below a threshold of 0.1. If this radius is smaller than \/5,
we assign O; = 1, marking a high local density, otherwise we
chose O; =—1 to mark a low local density. This definition is an
adaptation of the method used in Refs. 22 and 23, where one
relies on the cluster identification method. Nonetheless, both
methods are analogous to the usual two-time density-density
correlation function in particle systems. In Fig. 8(a), C(z, ) is
plotted against the translated time ¢ — ¢, at different values of
the waiting time t,, for Model I and in (b) for Model II with a
polymer of length N = 8192, quenched to T, = 1.5. Note here
that the quench temperature 7', is lower than in Sec. III B. It
will become clear as we move forward that here the scaling is
independent of T, for both the models. One can clearly see that
the data for different ¢, do not overlap and the decay becomes
slower with increasing waiting time #,. Such an absence of
time-translation invariance is a necessary condition for aging

0.3 " . ;
tw & _—
0.25} tw ~ 10° — @ ]
w ~ 108 —
0.2f J

0 0.1 02 03 0.4 0.5
t —t, (10° MCS)

T T
tw ~ 10> —— b
0.25] tw ~ 10° —— ()_
tw ~ 10" ——

0.4 0.5

0 0.1 0.2 0.3
t — ty (10° MCS)

FIG. 8. Plot of two-time correlation functions C(t, t,,) against ¢ — t,, for (a)
Model I and for (b) Model II. The exact values of ¢,, are very close to the
indicated value. The length of the polymer used here is N = 8192 and the
corresponding quench temperature is 74 = 1.5.
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in the system. In case of simple aging as described by (2),
assuming an algebraic growth of the relevant length scale, one
expects
C(t, 1) = g(t/1w), (25)

where g is the scaling function of the variable ¢/t,,. While
plotting C(t, t,,) as a function of ¢/t,, we fail to observe any
scaling for both the models as shown in Fig. 9(a) for Model 1
and Fig. 9(b) for Model II.

Such observation of “no data collapse” is known in order-
ing kinetics of diluted ferromagnets.”®%3 This led the authors
of Ref. 59 to use a special fitting ansatz given as

_ [ PO
Cltt) = G ( ! (tw)) , 26)
with the argument
|
h(t) = exp ( ) . 27
1—pu

Here, G is the scaling function and y is a nontrivial expo-
nent. Such an exercise with ¢ > 1 indeed provided them an
apparently reasonable collapse of the data. This is referred to
as the so-called superaging behavior. However, it is known
that algebraic constraints on the form of the autocorrelation
function rule out the existence of such superaging behavior.**
Later, while the analysis of Ref. 63 numerically convincingly
suggested that such an ansatz may indeed be a good fitting
function that provides a reasonable collapse of data, the true
scaling behavior has been shown by these authors to be realized
when one instead uses the generic scaling form (2).

Observation of data collapse using (26) with 0 < u < 1
is referred to as subaging, observed mostly in soft matter sys-
tems.% Previously this has also been observed for a collapsing
polymer.%®7 We have tested the scaling ansatz of Eqgs. (26)
and (27) with our data and tuned the exponent u by trial and
error until best data collapse is realized. We find u = 0.9 for
both models. The corresponding scaling plots are shown in
Fig. 9(c) for Model I and (d) for Model II. However, when we
now simply plot C(z, t,,) as a function of the ratio of cluster
sizes x. = €(t)*/{(t,,)*, as shown in Figs. 9(e) and 9(f) for both
the models, we also observe a reasonable collapse of data.®®
This implies that, in the present case, too, the generic form
(2) describes the true scaling behavior rather than any special
aging.

In Ref. 63, it has been argued that the simple aging of the
form (25) has been deduced considering an algebraic growth
of the relevant length scale. However, in their case a crossover
from the algebraic growth to a slower logarithmic growth in the
asymptotic limit makes such deduction meaningless, hence,
the absence of simple scaling with respect to t/t,. In the
present case, for clustering during the polymer collapse also,
we encountered a crossover from a transient period of growth
in the initial cluster formation stage to a faster growth in the
coarsening or coalescence stage, a fact that can be appreciated
from the insets shown in Fig. 4. This reversal of crossover in
our case could be the reason for the apparent appearance of
subaging behavior with p < 1, in contrast to the superaging
behavior, where the crossover occurs the other way around.

Our next task is to have a measure of the dynamic exponent
A¢ governing the scaling (2). In Figs. 9(e) and 9(f), the scaling
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plots show that the data for x. > 1 are consistent with the
continuous line having slope —1.25. In this regard, when the
numerically precise value® of v is inserted in the bound (3)
for A¢, one gets

0.762791 < A¢ < 1.525582. (28)

The obtained A¢ = 1.25 from Figs. 9(e) and 9(f) for both
Model I and Model II thus not only follows the general the-
oretically bound (3) but also seems to be in agreement with
the numerical estimates obtained for the off-lattice model in
Refs. 22, 23, and 62.

1. Finite-size scaling analysis

To further substantiate the numerical estimate of Ac, we
call for a finite-size scaling analysis using data for three differ-
ent system sizes shown in Figs. 10(a) and 10(b), respectively,
for Model I and Model I1. Note that here we have used a fixed ¢,,
(=10% MCS), hence the onset of finite-size effects (the down-
ward tendency of the data) occurs earlier for smaller N. We do
a finite-size scaling analysis based on the scaling form (2) by
writing down our finite-size scaling ansatz as

NC(1,1p) = Ya(Ya), (29)

where for the judicial choice of the scaling variable
Ya = x(NAc) e, (30)

one gets ¥, ~ y,'¢, i.e., ya ~ Ya_l/’lc. In our exercise, we
fix Ac = 1 and by varying A¢ obtain reasonable data collapse
for A¢ = 1.25(5), consistent with the obtained value for dif-
ferent waiting times t,. In Figs. 11(a) and 11(b), we show
the representative plots for the finite-size scaling exercise for
Model I and Model II, respectively, with 1¢ = 1.25. Both the
models show reasonable quality of collapse of data and con-
sistent behavior withy, ~ Y, 1/1¢ Note that here the crossover
to the finite-size affected limit for smaller values of Y, from
the scaling regime occurs rather gradually in contrast to the
corresponding picture in an off-lattice model.??

2. Temperature-dependent scaling of aging

This universal nature of A¢, irrespective of the details of
models, thus urges us to check its robustness in the present
models at different quench temperatures, especially consider-
ing our observation of a rather non-universal nature of the other
dynamic exponent e for Model I. In Fig. 12, we show for the
chain of length N = 4096 the temperature effect on the behav-
ior of the autocorrelations C(#, t,,) as a function of x. for fixed
waiting time 7,, = 10°. There the y—axis has to be multiplied by
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afactorf =Ac(T, = 1)/Ac(T ), similar to the metric factors in
Fig. 7, to make them collapse onto a single master curve. This
master-curve behavior at different 7, implies that, in contrast
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FIG. 11. Finite-size scaling plot of C(t, t,,) for N = 2048, 4096, and 8192
for quench temperature T, = 1.5 with ¢, = 103 fixed for (a) Model I and (b)

Model I1. The scaling behavior y, ~ Y, e i reasonably well observed for
Ac = 1.25.
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FIG. 12. Plots to show the scaling of C(z, 1,,) withrespectto x, =€ (t)3 1€(ty )3
at different quench temperatures 7', for (a) the fixed bond Model I and (b) the
fluctuating bond Model II with N = 4096, for fixed ¢, = 103. To obtain the
data collapse, the two-time correlation functions were multiplied by a growth
amplitude dependent factor f, whose values are quoted in the figure.

to the cluster growth exponent, both models are found to be
following the same power-law decay of the autocorrelations
at different 7. This further strengthens the dynamic universal
behavior of the aging exponent A¢ concerning the collapse of
a polymer.

IV. CONCLUSION

We have presented results from the kinetics of collapse
for a lattice homopolymer in dimension d = 3 using two dif-
ferent bond types, that is, with fixed and fluctuating bonds.
The cluster growth that occurs during the collapse is a scaling
phenomenon as observed from the scaling of the two-point
equal-time correlation function. However, for Model 1 with
fixed bonds, the growth of the clusters appears to be strongly
dependent on the quench temperature. Similar observations
were observed for ordering phenomena in disordered mag-
nets.>>>® On the other hand, Model II where the bonds have
the flexibility of switching lengths between edges and diago-
nals of the lattice produces a much weaker dependence of the
growth on the quench temperature. In fact, for moderately high
temperatures, we show that the cluster growth can be described
by an universal finite-size scaling function, pretty much like an
off-lattice model. The growth exponent @, ~ 0.62 that we have
estimated for such a description, however, is much smaller than
what was observed for the off-lattice model?"** that exhibits
a linear growth. This we feel is attributed to the topological
constraint one encounters in a lattice model, a fact, though
expected, needs still to be verified. In this regard, it would
be worth investigating the kinetics in the bond-fluctuation
model.'® In equilibrium it has been shown that it produces the
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correct dynamical picture and one must expect that the topo-
logical constraints can be overcome more easily, which may
lead to a much more universal picture of the cluster growth.

Regarding the other aspect of the kinetics of collapse, i.e.,
aging, both the models produced a rather universal picture
independent of quench temperature. Although the absence of
scaling for the autocorrelation function with respect to ¢/t
suggested the presence of subaging, we have shown that the
simple aging behavior is realized when one observes the scal-
ing with respect to the ratio of growing cluster sizes, i.e.,
C(t, 1) ~ [€(t)?/€(1,)*] €. We also show that the nonequi-
librium autocorrelation exponent A¢, governing such scaling
is independent of the model as well as the quench temperature,
and the observed value of A¢ = 1.25(5) not only follows the
general bound (vd — 1) < A¢ < 2(vd — 1) but also matches
perfectly with the corresponding exponent from an off-lattice
simulation.?>?*%2 For ordering ferromagnets in dimension d
=2, the nonequilibrium order-parameter autocorrelation expo-
nent has been found to be Ao ~ 5/4,354 matching with the
value found in our present study for polymer collapse in lattice
models and in Refs. 22 and 23 for a continuum formulation,
both in d = 3 dimensions. Due to the dimensional differences
between the systems, we feel that this could be a mere coinci-
dence and further investigation is required to confirm any true
non-trivial relationship.

To conclude, we have shown how the methodologies pop-
ular in studies of ordering dynamics of particle and spin models
can well be used to understand the kinetics of polymer collapse.
Hence, we strongly believe that by using a similar framework
one could provide new insights into the mechanisms of other
macromolecular conformational transitions such as collapse
or folding of proteins or peptides using the hydrophobic-polar
(HP) model.**"" Furthermore, it would also be interesting to
check the validity of the various scaling laws discussed here
for bulk polymers in lower dimension d = 2 and for proteins
in quasi-two-dimensional geometry, e.g., for macromolecules
adsorbed on a substrate.
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