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Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
Henrik Christiansen,a) Federico Errica,b) and Francesco Alesianic)
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The performance of Hamiltonian Monte Carlo simulations crucially depends on both the integration timestep
and the number of integration steps. We present an adaptive general-purpose framework to automatically
tune such parameters, based on a local loss function which promotes the fast exploration of phase-space.
We show that a good correspondence between loss and autocorrelation time can be established, allowing for
gradient-based optimization using a fully-differentiable set-up. The loss is constructed in such a way that it
also allows for gradient-driven learning of a distribution over the number of integration steps. Our approach
is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein common
as a test case for simulation methods. Through the application to the harmonic oscillator, we highlight the
importance of not using a fixed timestep to avoid a rugged loss surface with many local minima, otherwise
trapping the optimization. In the case of alanine dipeptide, by tuning the only free parameter of our loss
definition, we find a good correspondence between it and the autocorrelation times, resulting in a > 100 fold
speed up in optimization of simulation parameters compared to a grid-search. For this system, we also extend
the integrator to allow for atom-dependent timesteps, providing a further reduction of 25% in autocorrelation
times.

I. INTRODUCTION

Simulations of molecular systems are predominately
performed using either molecular dynamics (MD)1 or
(random walk) Monte Carlo (MC)2 simulations. While
there are some peculiarities of these methods, both ap-
proaches can be used to sample the canonical ensemble,
i.e., a system in contact with a heatbath, and can, for
many purposes, be used as plug-in replacements for sam-
pling.

In the literature, there already exist a couple of ap-
proaches to combine both methods,3,4 where one of
the most studied ones is Hamiltonian Monte Carlo
(HMC),5–7 which was originally introduced as hybrid
Monte Carlo.8 The basic idea is to propagate the sys-
tem using a (microcanonical) integrator for a given num-
ber of steps, which conserves the total energy as used
in MD simulations but adds an acceptance of proposals
obtained in this way using MC. In case of rejection of
a move, the system is reset (in the typical MC fashion)
to the previous state. The additional step required for
HMC is to randomly draw new velocities, as otherwise,
the resulting configuration would be identical after rejec-
tion. Compared to the individual methods on their own,
this combined approach has the advantage that there is
no adverse effect of the numerical integration or external
control of temperature while providing a systematic way
to propose trial configurations.

The trial configurations proposed by this approach can
have a high acceptance probability, especially for small
timesteps and few integration steps, as then both the
numeric error and the integration errors are small (the
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total energy is in principle conserved by a microcanon-
ical integrator). Choosing both these parameters small,
however, leads to slow phase space exploration, whereas
choosing them large results in the simulation of a shadow
Hamiltonian and fast accumulation of numeric errors re-
sulting in small acceptance rates. This implies that there
is some balance between those two effects, for which the
simulation is much faster at exploring the phase space.
Sub-optimal values for these two parameters can severely
limit the efficiency of the simulation, reflected in a large
autocorrelation time.

We introduce a fully-differentiable framework that al-
lows to tune these simulation parameters of HMC via
backpropagation9,10 based on a local loss definition.
This, ultimately, replaces the otherwise needed expen-
sive grid search for good simulation parameters. The
framework is applied to the one-dimensional harmonic
oscillator, highlighting subtle effects of the approach oth-
erwise hidden in larger systems, and alanine dipeptide,11

a paradigmatic system for novel simulation techniques.
For the harmonic oscillator, we focus on fundamental
properties of HMC, in particular the connection between
fixed timesteps and local minima in the loss. For ala-
nine dipeptide, we find that using the usual definition
of loss from classical adaptive MC literature provides no
good correspondence to the autocorrelation times of the
potential energy. We propose a loss with only one hyper-
parameter and show that it can be tuned to provide a
substantially improved correlation. Further, we extended
the integrator to include atom-dependent timesteps lead-
ing to additional acceleration, which would be very diffi-
cult to optimize for using heuristic (gradient uninformed)
methods.

The paper is organized as follows: In Section II we give
a short review of the involved simulation methods, fol-
lowed by an introduction to our approach in Section III.
Section IV presents results for the two systems, Finally,
we will conclude and give an outlook on future research
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in Section V.

II. REVIEW OF SIMULATION METHODS

In the following, our goal is to simulate a classical sys-
tem, which consists of particles/atoms interacting via
classical potentials. This system is coupled to a heat-
bath, i.e., our target is to simulate in the canonical en-
semble. Then, each microstate described by the spatial
coordinates x occurs with a probability that is given by

P eq(x) =
1

Z
e−U(x)/(kBT ), (1)

where Z =
∫

e−U(x)/kBT dx is the partition function (in
statistics often simply referred to as normalizing con-
stant), U(x) is the (potential) energy of a microstate de-
pending on the atoms’ positions, kB is the Boltzmann
constant, and T is the temperature of the heatbath.
While the evaluation of the partition function would pro-
vide access to many thermodynamic observables, this is
in practice not possible since this necessitates evaluation
of all possible microstates. Instead, one attempts to ap-
proximate expectation values of quantities of interest at
a fixed temperature by producing samples from the tar-
get distribution, utilizing methods that do not rely on
the value of Z.

A. Monte Carlo

The main idea behind an MC simulation is to build
a Markov chain, starting with a random configuration
of the system at interest and subsequently progressing
by proposing new configurations (which only depend on
the current configuration).12,13 There is some freedom in
choosing the transition probabilities Wkl = W (ξk, ξl) be-
tween microstate ξk and ξl. In MC for molecular systems,
typically ξ = x, i.e., a set of Cartesian coordinates, but
in general this can be any configurational information.
One of the most flexible choices for the acceptance crite-
rion between states is the original Metropolis algorithm14

which reads

wkl = w(ξk, ξl) = min

(

1,
f(ξk, ξl)

f(ξk, ξl)

P eq(ξl)

P eq(ξk)

)

, (2)

where fkl = f(ξk, ξl) is the proposal probability for a
potential update to a new microstate. Here, the partition
function cancels, since one is only interested in the ratio
of the equilibrium distributions. This then leads to the
transition probability

Wkl =

{

fklwkl k ̸= l

fkl +
∑

k ̸=l fkl(1− wkl) k = l
. (3)

Using this prescription, it is easy to see that the detailed
balance condition given by

WklP
eq
k = WlkP

eq
l (4)

is fulfilled. This is a sufficient condition for the conver-
gence to the equilibrium distribution.

There are many ways to propose configurational
changes to the system, which then constitute the move
set. The “optimal” set depends highly on the system and
its parameters, where the parameters are often optimized
based on some target acceptance rate or a local criterion
based on the movement in phase space, such as the ex-
pected squared jump distance.15 One example of a more
systematic approach to tuning such parameters in a clas-
sical MC simulation is Ref. 16, where parameters of dis-
tributions used to propose changes are optimized based
on a local criterion (more details about the criterion are
discussed in Section III).

B. Molecular Dynamics

While in MC of a classical system, one is only con-
cerned with the (potential) energy of the system given
by the particle positions x, in MD one simulates the
combined phase space of coordinates and velocities v,
i.e., one has ξ = (x,v). Further, in standard MD, one
simulates in the microcanonical ensemble, manifesting in
principally conserved total energy H(ξ) = H(x,v) =
U(x) +K(v), where the potential energy U(x) depends
only on the coordinates x and the kinetic energy K(v)
depending on the velocities v. This is achieved by iter-
atively integrating the equation of motions, where the
most common prescription used is the velocity Verlet
algorithm,17 consisting of the following steps

xi(ti +∆ti) = xi(ti) + vi (ti)∆ti +
1

2
ai(ti)∆t2i (5a)

vi (ti +∆ti) = vi(ti) +
ai(ti) + ai(ti +∆ti)

2
∆ti (5b)

where i is the index of the atom, ∆ti is the (atom depen-
dent) timestep, and ai = −m−1

i ∂/∂xiU(x) is the acceler-
ation acting on the atom obtained from the potential. In
a standard MD simulation, the individual atoms need to
evolve synchronously in time, which practically restricts
the use of timestep to a global definition of ∆ti = ∆t,
i.e., the timestep is not dependent on the atom index.
That also implies that the maximal timestep which can
be used is determined by the fastest mode of oscillation.
As we discuss later, this restriction is not necessary for
HMC, being one source of potential speed-up compared
to MD.

To sample from P eq in the canonical ensemble using
MD, one has to additionally find a method to control the
velocities, for which there is no natural way.18 Each of
the established approaches has certain advantages and
disadvantages. In the canonical ensemble for MD, one
commonly reproduces the Boltzmann distribution of the
total energy

P eq(ξ) = P eq(x,v) =
e−H(x,v)/kBT

∫

e−U(x)/kBT dx
∫

e−K(v)/kBT dv
,

(6)
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which factorizes into the canonical distribution of the po-
tential energy and of the momenta

P eq(x,v) =
e−U(x)/kBT

∫

e−U(x)/kBT dx

e−K(v)/kBT

∫

e−K(v)/kBT dv

= P eq(x)P eq(v).

(7)

Not all thermostats produce the canonical ensemble,
so special care has to be taken to make the right
choice.18 Especially, some thermostats are only canoni-
cal in P eq(x), but not in the joint distribution P eq(x,v).

We also want to highlight that sampling using MD
is only approximate, i.e., the convergence to the target
distribution is only guaranteed in the limit of ∆ti → 0.
In contrast, MC sampling is asymptotically exact.

C. Hamiltonian Monte Carlo

HMC combines elements from MD and MC: Micro-
canonical MD simulations are used as proposals for the
MC accept/reject step. This combination of methods
was originally proposed by Duane et al.8 and later popu-
larized in the statistics community with applications to-
wards inference of Bayesian neural networks.5 There ex-
ists recent work highlighting the performance of HMC,19

and it is implemented in or for commonly used simula-
tion packages.20–22 However, one major hurdle is choos-
ing the optimal parameters of the simulation, as will be-
come clear in the following.

For this method, we again have both particle positions
and velocities as our state, i.e., ξ = (x,v). The steps of
HMC are as follows:

1. Draw velocities vk according to Maxwell-
Boltzmann distribution, generating the initial
state ξk = (xk,vk). This sets a new level of total
energy H(ξk).

2. Propagate the system according to Eqs. (5) for
n steps with fixed ∆ti = ∆t, resulting in a pro-
posal configuration ξl. The integration steps are
performed in the microcanonical ensemble, corre-
sponding to principally conserved total energy H
(in practice, this is not the case due to the dis-
cretization in time).

3. The new state ξl is then accepted according to
Eq. (2). If the proposal is rejected, the system is
reset to ξ = ξk and one continues at step 1.

The overall prescription produces a canonical distribu-
tion of the total energy, which following Eq. (2) (with
f(ξk, ξl) = f(ξl, ξk)) produces our target distribution of
Eq. (1). There are some important details of this proce-
dure which we will discuss in the following.

It has been realized in the HMC literature that it is
beneficial to jitter ∆ti, i.e., to not fix ∆ti but to pick it
from some distribution, to avoid some problems related

to repeatedly running into small unfavorable regions in
phase-space due to the deterministic dynamics.5 More
details on this will be discussed in Section III.

HMC replaces (or actually can augment) the hand-
crafted move sets used in a standard MC simulation.
The advantage of this approach is the additional use
of the forces to propose the moves, which allows for in-
formed moves that either dissipate or absorb kinetic en-
ergy. This way, the acceptance probability is drastically
improved while maintaining relatively large conforma-
tional changes.

1. Choice of Timestep and Number of Integration Steps

For an effective exploration of phase space, one needs
to balance phase-space movement and acceptance rates.
Indeed, it has been shown in Ref. 23 that the optimal
acceptance probability should approach 65.1% for HMC
(under some assumptions using the standard leapfrog
integrator), independent of the particular (high dimen-
sional) target. In practice, however, it is not clear if
all assumptions hold and it has been found to some-
times perform poorly, especially due to the observation
that samplers with the same acceptance rate can exhibit
vastly different behavior.24

The often employed practical solution of tuning the
parameters of HMC is thus to prescribe a target accep-
tance rate of around 60% and heuristically optimize the
timestep ∆t to take such a value that this is observed
on average. A common method to set a good number
of integration steps n is called NUTS,25 which uses a
recursive algorithm to build a set of candidate configura-
tions on the fly. This procedure stops once the so-called
U-Turn condition is satisfied, which signifies a doubling
back of the trajectory. While this approach works well
in practice, to preserve detailed balance, there is a need
to both consider moves in forward and backward direc-
tions which recursively build a tree of steps, from which
one then samples the proposal. This can incur a two-
fold overhead in performed updates, resulting in wasted
computation time.

Reference 26 proposed an improved gradient-based ap-
proach to tune HMC: The timestep is tuned based on a
target acceptance probability, while the number of inte-
gration steps was optimized based on a local objective
incorporating multiple Markov chains. This way, the ap-
proach can tune the total trajectory length n∆t, i.e., to
some extent to tune both crucial parameters of HMC.
There, it is shown that such an approach can outperform
NUTS and find the optimal parameters one would oth-
erwise find through an extensive and costly grid search.

2. Choice of Integrator

The propagation of the system can be performed by
any arbitrary function and does not need to follow the
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structure set in Eqs. (5) for the velocity Verlet algorithm.
For example, one could use higher-order integrators, such
as variants of the Runge-Kutta algorithm.27 In particu-
lar, for the velocity Verlet algorithm, as already hinted at,
∆ti can be atom-dependent (or even be independent for
each degree-of-freedom), not simulating within the mi-
crocanonical ensemble any longer. This may seem coun-
terintuitive, but from the point of view of generating a
trial configuration for an MC simulation, there is no re-
quirement for the integrator to reproduce microcanonical
trajectories. Indeed, as we will show in Section IV B3,
this simple extension can lead to an acceleration of sam-
pling.

A similar approach was originally introduced in Ref. 28
by using neural networks to reparameterize the integra-
tor. There, the parameters of the neural network were
optimized using a gradient-based optimization approach
using a local loss (see next section) for a set of statis-
tical distributions and latent-variable generative models.
However, in their set-up, they are not able to learn n and
did not optimize ∆t.

For general integrators as for example used in Ref. 28,
the change in phase-volume needs to be accounted for in
the accept/reject step of Eq. (2). We refer to the litera-
ture on normalizing flows for details on this, in particular
Refs. 29–31. For the case of atom-dependent timesteps,
the change in phase-volume is zero, so that we can simply
use the ratio of our target distribution P eq(ξ) and do not
need to account for this explicitly.

III. SELF-TUNING HAMILTONIAN MONTE CARLO

The goal of our work is to present a generally applicable
approach that allows for a gradient-based optimization of
simulation parameters of HMC for molecular simulations.
In particular, we will focus on optimizing the timesteps
∆ti (both global and atom-based) and the number of
steps n used in HMC. Such an approach has three major
benefits: i) It eliminates the otherwise needed expen-
sive grid search over these parameters to arrive at good
simulation parameters, ii) it can additionally speed up
the simulation when using atom-based timesteps, and iii)
it is easy to implement in machine-learning frameworks
with automatic differentiation, such as PyTorch.32

In the following, we present the general simulation
setup and discuss how gradient-based optimizers can be
utilized to find good parameters of our simulation based
on a local definition of the loss, as proxy for the auto-
correlation time, that promotes phase-space exploration.
We also discuss the importance of avoiding local minima
for the optimization by not considering timesteps that are
fixed, but picked from a distribution. Compared to the
approaches presented in the last section, our approach
allows the combined learning of ∆ti and n without any
additional assumptions.

A. Fully Differentiable Simulation Set-Up

Gradient-based optimizers are known to be very effi-
cient in finding minima in high dimensional problems,
making them a prime candidate for our approach since
the number of atoms can grow quite large, constitut-
ing many correlated parameters. Although classical
gradient-based optimizers, by definition, only use local
information and can be trapped in a local minimum, we
show that in our application they can very efficiently find
suitable values for the parameters.

We achieve a fully differentiable simulation set-up by
implementing our algorithm in PyTorch,32 a software li-
brary often used in machine learning. The appeal of this
approach is automatic differentiation33,34 which allows
for the evaluation of partial derivatives of a function spec-
ified by a computer program. In PyTorch, any operation
applied to the so-called tensors is recorded, so that via the
chain rule one can calculate the gradient on any parame-
ter of the computation graph. To make changes based on
this gradient information, we then need a way to judge
the goodness of the output of the computation, i.e., a loss
L (details discussed in the next section) associated with
the integration.

The parameters are then updated depending on the
loss using backpropagation,9,10 i.e., the derivative of the
loss with respect to every parameter θm of the computa-
tion graph we want to tune is calculated and then used
to update the value of the parameter

θ′m = θm − η
∂L

∂θm
, (8)

where η is the so-called learning rate and θm is for ex-
ample the timesteps ∆ti or the number of integrations
steps n. This type of update rule is also called gradient
descent, i.e., the parameters are changed in the opposite
direction of the gradient. Variants of this optimization
algorithm exist, which for example also include a mo-
mentum variable to accelerate convergence. We will use
one of the most popular optimizers incorporating such
additional terms, i.e., the Adam optimizer.35

B. Autocorrelation and Loss Definition

In the following, we discuss the definition of the auto-
correlation function/time and how we propose to define
a proxy loss for it.

1. Autocorrelation

The most common way to evaluate the performance of
an MC simulation is to investigate the autocorrelation
between subsequent states of the chain. For this, we first
recall the definition of the autocorrelation function13

AO(k) =
⟨OiOi+k⟩ − ⟨Oi⟩ ⟨Oi⟩

⟨O2
i ⟩ − ⟨Oi⟩ ⟨Oi⟩

, (9)

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
77

73
8



Accepted to J. Chem. Phys. 10.1063/5.0177738

5

where k is the lag time, O is any observable of the sys-
tem, and ⟨. . .⟩ symbolizes the thermodynamic expecta-
tion value in equilibrium when sampling P eq. From the
autocorrelation function, one way to obtain the autocor-
relation time is

τO =
1

2
+

Nt
∑

k=1

AO(k)

(

1− k

N

)

, (10)

where Nt is the number of measurements. The autocor-
relation time is related to the effective sample size (ESS)

NO,eff =
N

2τO
. (11)

In practice, we calculate the ESS as implemented in
tensorflow36 where the sum in Eq. (10) is truncated as
proposed in Ref. 37. We then use the ESS to estimate
the autocorrelation time τO via the above relation.

The importance of the autocorrelation time lies in the
need to be included when calculating the standard devi-
ation on observables as

σ2
O
=

σ2
O

NO,eff
=

σ2
O

N
2τO. (12)

That is, when an algorithm has a smaller autocorrelation
time one needs to simulate shorter to achieve the same
error on the observable.

2. Proxy Loss

Quantities related to the autocorrelation function can-
not be effectively used as an objective for the fully-
differentiable set-up since they require long chains to pro-
vide reliable estimates of τO. Therefore, we make use of
a proxy loss to the autocorrelation time, defined as

Ln = −pn|x′

n − x0|b (13)

where pn is the acceptance probability of the proposal
and |x′

n−x0|b is the movement in coordinate phase-space
(distance between the start and end states), computed af-
ter performing n integration steps, i.e., for each proposal
we generate. A common choice in the adaptive MC liter-
ature is to use b = 2,15,16,38 where one is thus optimizing
for the expected squared jump distance. This definition,
however, is not unique and is not guaranteed to provide
the best correspondence to a reduction in autocorrelation
times for all observables. For example, an optimal jump
in real coordinates does not need to lead to an optimal
autocorrelation time for other observables such as the po-
tential energy. Further, the expected jump distance only
optimizes for the lag-1 autocorrelation, whereas further
values are ignored. It is not clear how well the infor-
mation about correlations at small lags correlates with
the overall shape of the autocorrelation function. This
means that there is still some freedom in optimizing the
loss function.

For example, in Ref. 28 the authors introduced an ad-
ditional reciprocal term that penalized small jumps more
strongly, and in Refs. 26 and 39 alternative definition re-
lying on multiple chains are proposed, either by evaluat-
ing the change in the estimators of the expected squared
jump26 or focusing on difficult directions.39 As we will
show later, for alanine dipeptide we found that simply
setting b ≈ 4 > 2 provides a better correspondence with
the autocorrelation times we observe for the potential
energy.

Since our goal is to propagate the system as efficiently
as possible in terms of computational effort, the definition
of the loss in Eq. (13) is only sufficient when the number
of integration steps n is fixed. For our purposes, we intro-
duce a rescaling of the loss by the computational effort,
i.e., we define the loss as Ln/n and by this incorporate
the information that every integration step takes roughly
the same computational effort. Previously, it was empir-
ically found that defining L/

√
n provides a well-working

approach in practice,24 although it is not entirely clear
to us why the cost should not enter linearly.

3. Learning the Number of Integration Steps

When optimizing for the number of integration steps
one needs to find a way to include the information about
them in the loss for each n, which allows calculating par-
tial derivatives with respect to it and gives a signal for
good values. Thus, to learn the optimal (distribution of
the) number of integration steps n, we propose to weight
the output of every integration step with a learned dis-
tribution. For this, we define the loss as

L =

N
∑

n=1

cnLn/n, (14)

where cn are the weights of the particular number of inte-
gration steps and N is the maximal number of integration
steps considered during training. The cn are in practice
obtained as softmax of unrestricted parameters Cn, i.e.,

cn = σ(Cn) =
eCn

∑N
n=1 e

Cn

, (15)

where the temperature of the softmax is set to unity. We
initialize Cn as uniform random numbers from zero to
one and apply the softmax to arrive at our initial cn.

This approach is inspired by an attention-like set-up40

and allows to give “attention” towards a particular in-
tegration step. While this approach makes it necessary
to set a maximum number of integration steps N dur-
ing training and always simulate until the maximum is
reached, after learning one categorically picks from the
probabilities and there is thus no unnecessary computing.

In practice, we also normalize the loss by the num-
ber of atoms (usually fixed during a simulation) and the
number of epochs to arrive at optimal learning rates that
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are as independent of the system as possible. Since they
are only constant factors during training, these do, how-
ever, do not influence the system apart from rescaling the
learning rate.

C. Local Minima and Jittering

As noted before, local minima in the loss are a problem
for classical gradient-based optimizers. This is a poten-
tial limitation of our approach when optimizing param-
eters of HMC, as their existence cannot always be ruled
out.

One known source of problems in HMC is using a fixed
timestep which can potentially lead to problems related
to deterministically sampling unfavorable configurations.
Jittering of the timesteps ∆ti is a well-known approach
to avoid this potentially detrimental periodic behavior of
the integrator. In our case, we pick ∆ti from a normal
distribution with fixed relative variance, i.e.,

∆t′i ∼ N (∆ti, s∆ti), (16)

where s is a free parameter. As we will show in Sec-
tion IV A for the harmonic oscillator, the introduction
of jittering has particular importance when optimizing
based on the local proxy loss using gradient-based op-
timizers, which has to our knowledge not been realized
before. Without jittering several local minima occur in
the loss landscape of ∆t and n trapping the optimization
there. We thus show that jittering avoids one source of
local minima in the loss. For high dimensional optimiza-
tion problems, this may not be the only source of local
minima in the loss surface. In such a setting, it is possi-
ble to probe whether local minima exist by starting with
different initial parameter guesses and checking whether
the parameters converge to the same values after opti-
mization, but not to investigate the loss surface system-
atically. While we cannot solve the global optimization
problem, our setup allows at least the optimization of
parameters within the basin of attraction. This is in-
deed what we observe when simulating alanine dipeptide
with atom dependent timesteps ∆ti in Section IVB 3,
for which we find that the optimization for some initial
parameters appears to get trapped in a (worse) local min-
ima.

IV. RESULTS

We first study the one-dimensional Harmonic oscillator
in our framework. This allows us to highlight some im-
portant aspects, such as the occurrence of shadow Hamil-
tonians for large timesteps and the periodic behavior in
the loss, leading to multiple minima when not using jit-
tering of the timestep. Once we have understood the
peculiarities of our approach, we explore the use of our
self-tuning HMC framework on the physically more re-
alistic protein system, alanine dipeptide. Here, we focus
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t=0.1 t=0.8 t=1.5

FIG. 1. (a) Example trajectories for x and v of the one-
dimensional harmonic oscillator for ∆t = 0.1 at T = 0.5 as
obtained from HMC with n = 100. (b) Influence of the choice
of ∆t on the simulated (shadow) Hamiltonian using other-
wise the same parameters as in (a). The solid lines in the
same color as the data points correspond to the analytically
expected trajectories. The big dots symbolize the starting
point of the trajectory, which sets the expected energy level.

on the definition of the loss, in particular, the ideal value
of b in Eq. 13 for this class of systems. We extend the
general approach that allows the replacement of the grid-
search by including atom-dependent timesteps, which in
our case leads to a further speed-up without additional
overhead.

A. Harmonic Oscillator

The full Hamiltonian of the one-dimensional harmonic
oscillator with mass m = 1 and spring constant k = 1 is
defined as

H = U(x) +K(v) = 0.5(x2 + v2), (17)

where x is the position and v is the velocity of the mass.
Our goal for this exemplary system is to simulate it at
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a fixed temperature in the canonical ensemble, for which
we choose T = 0.5 here (kB = 1 in this case). While
this is one of the most simple systems one can consider
and has been considered as a test system in some cases,5

a systematic study in the framework of HMC is lacking,
especially in the context of a self-tuning approach.

1. Phase Space and Simulated Shadow Hamiltonian

In Fig. 1(a) we visualize a few sample trajectories of
the harmonic oscillator for ∆t = 0.1 and n = 100 inte-
gration steps obtained from HMC. The trajectories form
(near perfect) circles, where the radius is given by en-
ergy conservation of the Hamiltonian (17). The differ-
ent radii of the circles can be understood since at every
new iteration the velocity is picked from the Maxwell-
Boltzmann distribution, setting a different level of the
total energy. With these parameters, the total energy is
nearly perfectly conserved for each trajectory, leading to
acceptance rates close to 100%.

It is well known in the literature that, when using a
finite timestep, one only simulates the so-called shadow
Hamiltonian5,41–43 and not the true Hamiltonian. The
difference between these two Hamiltonians is dependent
on the chosen timestep ∆t and can readily be observed for
the harmonic oscillator, for which we plot example tra-
jectories for different ∆t in Fig. 1(b). While for ∆t = 0.1,
the circles are perfect on this scale as before, for ∆t = 0.8
and 1.5 fs the trajectory clearly forms an ellipse with ec-
centricity e > 0. As solid lines in the same color as
the data points, we have also drawn the trajectories that
should theoretically have been simulated, simply follow-
ing the energy conservation prescribed by the Hamilto-
nian (17). These true trajectories start from the initial
point of the trajectory marked by the big dot in the same
color. It can be seen that the points deviate more from
the true circle for increasing ∆t. Whenever one observes
points on the inside of the circle, this corresponds to lower
total energy and thus acceptance of 100%, whereas points
outside the circle have larger total energy and are not al-
ways accepted.

While one would naively expect that these effects
should average out since one often starts from a new ini-
tial position, resulting in an average acceptance rate dur-
ing a full HMC simulation, this is not the case. Since the
first point of the phase-space sets the initial energy level
(which in turn sets the radius of the circle) and one al-
ways moves along the trajectory the same distance (given
by n∆t) in either forward or backward direction, one sees
a periodic behavior of the acceptance rate given by the
“deviation from the circle” in Fig. 1. This has crucial
effects on our approach, as shown in the next sections.
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0.4
0.7
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< -6 16 38

log(|xn x|2)(b)

FIG. 2. (a) Acceptance p and (b) logarithm of squared jump
(x′

n − x)2 as a function of timestep ∆t and number of inte-
gration steps n for the one-dimensional harmonic oscillator
at T = 0.5. Shown are in both cases the results for the not
jittered (s = 0) and jittered (s = 1/4) timestep ∆t.

2. Influence of Jittering

In this section, we will investigate the advantage of jit-
tering the timestep ∆t on the dynamics of the harmonic
oscillator as an approach to avoid recurring patterns,
as observed in the last section. We jitter the timestep
following the definition in Eq. (16). Figure 2(a) shows
a heatmap of the acceptance rate pn as a function of
timestep ∆t and the number of integration steps n for the
harmonic oscillator, both without (s = 0) and with jitter-
ing (s = 1/4), measured after the system is equilibrated.
Without jittering one observes several minima/maxima
in the surface plot, corresponding to small/large accep-
tance rates. They follow a pattern, which can exactly
be explained by the deviations from the true trajectories
discussed in Fig. 1(b).

When introducing jittering on the timestep, as shown
in the same plot where we have used s = 1/4, these
minima/maxima vanish and one observes as a function of
∆t a smooth decay of the acceptance rate pn. This decay
is also there in the non-jittered simulation, but less visible
due to the overlay with the many minima/maxima.

This highlights the problem of using a simple crite-
rion of fixed target acceptance rate, as often done when
tuning the parameters of HMC. Without jittering, one
would pick, depending on the starting parameters, any
pair of ∆t and n having the desired value of acceptance
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rate, which does not need to correspond to a small au-
tocorrelation time (as shown in the next section). For
the jittered simulations, one would pick a fixed ∆t as lo-
cal minima/maxima are smoothed out, but without any
ability to distinguish between the influence of n on the
performance. As we will see later, this does not corre-
late well with the autocorrelation times of the potential
energy.

A similar behavior of multiple local minima/maxima
can also be observed for the squared jump distance, pre-
sented in Fig. 2(b). Here, we have opted to plot it log-
arithmically, since the differences in the jump are quite
large for some parameter configurations. Without jit-
tering (s = 0), one observes several minima/maxima in
the surface plot, whereas with jittering s = 1/4 this is
not seen. With jittering, however, finds that the squared
jump distance can become huge for the larger ∆t and n
region, which can be explained by the occasional “break-
ing” of simulations at large ∆t where self-enforcing effects
lead to explosions of the values of the position and veloc-
ity. This is a well-known effect when choosing very large
time steps and are typically rejected by the Metropolis-
Hastings criterion due to a very large potential energy.

3. Loss Surface

The observations from the last section have crucial ef-
fects on our definition of the loss. Figure 3(a) and (b)
show the loss Ln of Eq. (13) recorded during the HMC
run (without learning, i.e., only showing the obtained val-
ues for the optimization target). The general observation
of multiple minima/maxima for the separate acceptance
rate and squared jump distance in Fig. 2(a) and (b) also
carries over to the loss (correlated expectation value of
both) without jitter, see Fig. 3(a). With jitter, as shown
in Fig. 3(b), the loss loses this property, and one (clear)
global minimum emerges at ∆t ≈ 1.3 and n ≈ 2.

Our goal is that the loss serves as a local proxy for
the autocorrelation times of our observables, where we
here focus on the correlations of the potential energy as
a placeholder for many interesting properties of the sys-
tem. While not optimally, the loss agrees generally well
with the (logarithms of the) autocorrelation times for the
potential energy presented in Fig. 3(c). The region with
lower loss appears to be shifted relatively towards higher
∆t, which however is not as detrimental as smaller ∆t.
Finally, we are, however, interested in the performance
per computing effort. For this, we plot Ln/n in Fig. 3(d),
which shifts the minimum towards smaller n. The global
optimum for this system is somewhere around ∆t ≈ 1.75
and n ≈ 1. This is also reconfirmed for the autocorre-
lation time nτ shown in Fig. 3(h), measured in terms of
the computational effort. Here, we also observe that the
minima shift towards smaller n, although not as strongly
as for the loss. This is due to the relative difference in
the amplitude between minimum/maximum for the loss
and autocorrelation time.

The difference in autocorrelation times even for this
simple system is quite large, corresponding roughly to a
difference of 100, highlighting the importance of choosing
suitable parameters for ∆t and n.

4. Learning of HMC Parameters

We have now established a good correlation between
the loss and the autocorrelation time of the potential
energy for this system and shown that local minima in
the loss surface are eliminated by jittering the timestep.
With this setup in place, we now turn to learn the op-
timal parameters via the fully differentiable framework,
implemented in pyTorch.32 We make use of the Adam
optimizer35 with learning rate ϵ = 0.01 with otherwise
default parameters from PyTorch. Before performing an
optimization step of ∆t and n, we perform 10 proposals
to average out the resulting gradients, setting our epoch
length. The system is initialized for different ∆0t and our
attention weights Cn are picked randomly uniform from
zero to one (this means our mean value of the number
of steps n is initially ≈ N/2 and allows for “information”
from all integration steps).

In Fig. 4(a) we again show the loss surface of Ln/n
presented in Fig. 3(d), but now include sample learning
trajectories for different initial values of ∆0t with the
Cn randomly initialized as discussed before. We plot the
mean values of the timestep and number of integration

steps, i.e., ∆t and n =
∑N

i=1 ncn. It is evident from the
visualization of the trajectories that, independent of the
initial parameter, all curves move towards the region with
smaller loss values. This is reinforced by the recorded
loss values during training, which we plot as a function
of training epoch t in Fig. 4(b). Since the data for the
recorded loss is very noisy due to the small batch size
and few degrees of freedom of the system leading to little
self-averaging, we have calculated a running average over
300 epochs to visualize the training.

For ∆0t = 0.1 some jumps in the loss are visible,
mainly around t = 3000. This corresponds to the “jump”
from a big weight at n = 3 to n = 2, which can also be
appreciated from Fig. 4(c), where we show the attention
weights cn for different epochs. Initially, at t = 0, the
weights are nearly uniform, whereas then for early times
at t = 200 a small peak forms around n = 5. As time
progresses, there is a large weight on n = 3 which then
in the time-span from t ≈ 1000 shifts towards n = 2 at
t ≈ 3400. At the final training epoch, the weight is com-
pletely on n = 2. These observations are consistent with
what we see in Fig. 4(a) as movements on the loss surface
for ∆0t = 0.1.

Having a good correspondence between loss and the au-
tocorrelation of the potential energy we have shown that
our fully differential framework allows us to effectively
learn good parameters of HMC without the need for an
expensive grid search. Next, we will consider a bigger
molecular system with more intricate interactions.
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FIG. 3. (a) and (b) show the loss LN as a function of ∆t and n for (a) no jittering (s = 0) and (b) with jittering (s = 1/4).
In (c), we plot the logarithm of the autocorrelation time extracted from the time-series of the potential energy. The region
of desired small aucorrelation times corresponds reasonable well to the region where the loss is minimized, as shown in (b).
(d) shows the same data as in (b), but the loss is rescaled with the computational effort Ln/n. Finally, in (e) we again
show the logarithm of the autocorrelation time, but in units of the computational effort nτ . The logarithm is chosen for the
autocorrelation time to highlight the differences, as these are much larger than in the other plots for the losses.
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FIG. 4. (a) Loss surface as a function of ∆t and n. On top, three example trajectories show the expectations values of ∆t
and n during learning for three initial values of the timestep ∆0t. (b) The corresponding loss as a function of epochs t for the
curves shown in (a). (c) Attention weights cn for ∆0t = 0.1 for different epochs indicated in the legend.

FIG. 5. Graphical representation of alanine dipeptide, where
the atoms are marked by their index. The white color sym-
bolizes hydrogens, the green color stands for carbon, the red
color represents oxygen and blue is for nitrogen.

B. Alanine Dipeptide

Alanine dipeptide has proven itself as the most com-
mon protein to test novel algorithms, which is why we
investigate it in the following. We simulate this system
in vacuum, thus this protein has 66 positional degrees-
of-freedom (22 atoms in d = 3 spatial dimensions) with
some interaction between atoms being bonded, as drawn
schematically in Fig. 5. As force-field, we make use of
Amber-19ffSB, for which we have adapted the imple-
mentation from TorchMD44 for our purposes.45 We note
that to use gradient-based optimizers, we have to differ-
entiate through the whole computation graph, including
the integrator and the force field. For a description of
the functional form of the potential energy part of the
Hamiltonian, we refer to Ref. 46. The temperature is
set to T = 300 K and free boundary conditions are em-
ployed. For the HMC simulations, we have found that
jittering with 25% can lead to non-stable simulations for
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larger ∆t, which is why we here chose to use a jitter with
10% relative variance, i.e., s = 0.1. The loss and the
autocorrelation time surfaces were calculated with fixed
parameters after equilibration and obtained from time-
series with 2× 105 MC proposals.

1. Adaptation of the Loss

We start by investigating the correlation between the
loss and the autocorrelation time of the potential energy.
In Fig. 6(a)-(c) we plot the loss surfaces for different
choices of b in the definition of the loss of Eq. (13). A
larger value of b promotes big jumps and gives less im-
portance to small jumps, that is, big moves are more im-
portant. We have checked that the surface has multiple
minima/maxima when we do no jittering, reiterating the
importance of its inclusion. In Fig. 6(d), the correspond-
ing autocorrelation time based on the potential energy
is shown. This approach of adapting the loss function
is similar in spirit to the one presented in Ref. 28, al-
though the influence was not investigated in detail there.
They chose to include a reciprocal term with a positive
sign, i.e., actively small jumps in the coordinates were pe-
nalized. We have empirically checked the loss proposed
in this reference, but did not find suitable parameters
for their free parameter which corresponded to a better
match.

We find that using the common definition of a squared
jump distance (b = 2) in Fig. 6(a) does not correlate
well with the actual observed autocorrelation times in
Fig. 6(d). The region having a small loss is very large,
going down to a small number of integrations steps n ≈ 3
for ∆t = 2.3 fs, whereas for the autocorrelation times, the
region of the minimum starts around n ≈ 9. As discussed
before in Section III B 1, there can be several reasons for
this mismatch. On the one hand, the limitation of opti-
mizing for the lag-1 autocorrelation (made necessary to
have a fast converging measure) is a potential source of
mismatch and on the other hand, the focus on a different
observable can introduce problems. Thus, other defini-
tions of the loss might provide a better correspondence.

In (b) and (c) we therefore empirically test what hap-
pens to the loss surface for b = 3 respectively b = 4. We
find that for b = 3, the minimum region of the loss shifts
towards the right (larger number of integration steps n),
as expected. The correspondence between the loss sur-
face and the autocorrelation times is much better. For
b = 4, the minimum of the loss-surface appears still to
align well with the autocorrelation time, however, it ap-
pears slightly too much favored towards large n. This
impression, however, changes once we consider the loss
per computational cost Ln/n, which we plot in (e)-(g).
Due to the small differences in amplitude between the
maximal and minimal loss values when compared to the
differences between autocorrelation times, the division by
n massively shifts the loss towards smaller n, which is not
reflected in the autocorrelation time. As for the harmonic

oscillator, we also here observe a less pronounced shift to-
wards smaller n for the autocorrelation time in units of
computational effort nτ plotted in (h). From these plots,
we find the loss for b = 4 in (g) to provide a good cor-
respondence, so we will use this value for the following
analysis. We believe that this value may be well suited
for a larger class of systems, although a physically more
detailed study is necessary to make definitive statements.

2. Learning of HMC Parameters

We now turn to learning the parameters of HMC,
following the general outline of the previous discussion
for the harmonic oscillator. The learning rate is set
to ϵ = 0.001 and the other parameters of the Adam
optimizer35 are kept at the default of PyTorch. The
epoch length is set to 10 MC proposals. All results shown
in this section are averaged over 5 independent learning
trajectories for each initial ∆0t, where each run was per-
formed using a different random number seed responsible
for the initialization of the weights Cn, the sampling of
velocities, and the acceptance/reject step of HMC.

In Fig. 7(a) we present again the loss surface per com-
putational effort Ln/n for b = 4, where we have plotted
three representative learning trajectories for three differ-
ent initial values of ∆0t, where the meaning of the color
of the lines can be extracted from (b) and (c) of the same
Figure. The trajectories are obtained by initially setting
∆0t = 0.1 fs, 0.9 fs, and 1.7 fs respectively, whereas the
Cn are initialized randomly resulting in a mean value
close to N/2. We see that all simulations approach a
very similar optimum of the loss, which also corresponds
to a region where the autocorrelation times are small.
Note that the curves assume larger values of ∆t than the
region for which we had originally performed our grid-
search of parameters (15 values for n and 12 values for
∆t), as is also clear from Fig. 7(b) where we show ∆t as a
function of learning epoch t. The values of ∆t should be
seen in the context of the ones used for classical MD sim-
ulations in the canonical ensemble. There, to capture the
fastest motions and to guarantee stable simulations, one
typically uses a timestep of 0.5 fs for this system (some
approaches restrict the motion of Hydrogens, allowing via
this trade-off a larger timestep). The timestep ∆t ≈ 2.5
we find as optimal allows for a nearly five-fold faster sim-
ulation, although of course due to the acceptance/reject
step of MC some trajectories are rejected. In addition,
MC guarantees the exact sampling of the true Hamilto-
nian since we have no effects due to the discretization of
the timestep.

It is interesting to note that the values of the accep-
tance rate around the optimal region are in the range
from 50% to 60% and by this somewhat smaller than the
predicted ideal value of ≈ 65%,23 although still compat-
ible.

Fig. 7(c) shows the value of the loss L as a function
of training epoch t. All simulations have similar behav-
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FIG. 6. Influence of the parameter b in the loss of Eq. (13) on the loss is shown for alanine dipeptide for (a) b = 2, (b) b = 3,
(c) b = 4 on the loss surface Ln as a function of ∆t and n is shown. In (e) the corresponding logarithm of the autocorrelation
time of the potential energy is presented. (e)-(g) show the corresponding plots of the loss per computational effort Ln/n, and
(h) shows the logarithm of the autocorrelation time in terms of computational effort nτ .

ing loss curves (with some differences during the initial
training), which all arrive at very similar loss values. This
is because although the values of ∆t are quite different,
they cannot be distinguished by the definition of the loss.
For the start with ∆0t = 0.9 fs, we plot also the weights
given to each integration step for some selected epochs
during training in Fig. 7(d). We find that starting from a
random initialization giving every layer roughly the same
weight, the weights move towards larger n quite fast, re-
sulting in a large weight for our maximally considered
integration step N = 29 for late training times t. There
is some interplay between the timestep ∆t and the num-
ber of integration steps n, as for a given (smaller) ∆t
the optimum of n does not need to coincide with the op-
timum for a different n and thus the optimization due
to the differential set-up shifts its respective optimum.
This, potentially, can influence the training, but we did
not observe any obstacles in this regard.

Our method thus allows the gradient-driven learning
of good simulation parameters for HMC, saving a factor
of above 100 in computational effort (5.4×108 force eval-
uations for the here performed grid-search vs. 2.9 × 106

force evaluations for the gradient-based optimization).47

This, of course, relies on a suitable definition of the loss as
proposed here, which is certainly a limitation of adaptive

TABLE I. Autocorrelation times τ for different initial ∆0t for
atom based timesteps and global timesteps. In the brackets,
we note the error of the mean.

∆0t 0.1 fs 0.9 fs 1.7 fs

τ for atom based ∆t 12.7(2.6) 7.5(9) 7.5(1)

τ for global ∆t 12.1(1.8) 10.0(1.0) 9.9(1.3)

MC methods in general.

3. Atom Dependent Timesteps

In addition to learning the standard parameters of
HMC, our approach also allows for the learning of
many more parameters, such as e.g., atom-dependent
timesteps. This means, we now not only have a single
∆t for all atoms, but rather a different ∆ti per atom
index i. As a reminder: We have 22 atoms in alanine
dipeptide which means that we now have 22 different pa-
rameters for the timestep to optimize. For the number-
ing of the atoms in the following Figures, refer to Fig. 5
showing the molecule. Heuristic approaches not based on
gradients would most likely be much less efficient at the
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FIG. 7. (a) Loss per computational effort Ln/n as a function of ∆t and n. Drawn are also three example trajectories obtained
during training for initial ∆0t = 0.1 fs, 0.7 fs, and 1.7 fs. In (b) we show the value of ∆t as a function of the learning epoch
t for the three initial conditions. (c) Shows the corresponding loss for these three initial conditions as a function of training
epoch t. (d) displays the weights cn as a function of the corresponding timestep n for different training epochs t as mentioned
in the legend, where we have focused on the region of n ≥ 20. In all cases (b)-(d), the shaded regions in the plot correspond to
the error of the mean obtained by averaging over 5 independent runs.

optimization of these many parameters, which highlights
the importance of our fully differentiable approach.

We use the same definition of the loss as in the last
section, but since the parameter space is now of much
higher dimension, the loss surface cannot any longer be
explored by a grid search or even easily visualized, which
is why we only consider improvements of the autocorrela-
tion times directly. We find that the overall optimization
results in smaller loss values, as shown in Fig. 8, as is ex-
pected for a more parameterized version of the integrator.
Compared to only having a single time-step ∆t, we now
find a loss value after training of about L ≈ −0.3× 10−5

(Fig. 8(a)) compared to L ≈ −0.2× 10−5 (Fig. 7(c)), at
least for starts with ∆0t = 0.9 fs and 1.7 fs.

In Table I we present the autocorrelation times for the
potential energy. We find that using atom-based ∆ti,
our autocorrelation times for ∆0t = 0.9 fs and 1.7 fs are
roughly 25% lower compared to their counterpart having
a global ∆t. Using atom-based ∆ti has only very little
influence on the resulting wall-clock runtime after train-

ing, so incorporating them in practice simply results in
the reported speed-up without additional cost. For 0.1 fs,
the autocorrelation times using atom-based timesteps or
a global timestep are comparable, which is not surprising
since for this case the loss values are also comparable.

In Fig. 8(b) we plot the atom-based timesteps ∆ti as
a function of epoch t for initial ∆0t = 0.9. We find that
the timestep for some atom index i is greatly improved
relative to others, which corresponds to a larger timestep
of these atoms. Also, the absolute value is much larger
than the average value one obtains when optimizing only
the “global” timestep ∆t. Figure 8(c) shows the final val-
ues of ∆ti after the learning, which highlights that, at
least for the initial values of ∆0t = 0.9 fs and 1.7 fs, one
arrives at very similar behavior of ∆ti, which is an indi-
cator that there is a local minimum of the loss for these
values of ∆ti. There is up to a 3.5 fold difference between
the largest and smallest timestep, highlighting the differ-
ences in the ideal parameters. For ∆0t = 0.1 fs, many
signatures as for the other two initial starting parameters
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FIG. 8. (a) Loss L as a function of epoch t for different initial values of ∆0t. (b) Shows the individual ∆ti per atom for the
initial value of ∆t = 0.9 fs, where we have colored atoms of the element with the same color. In (c) the final learned value of
∆ti after training is shown for the different initial values of ∆t. Finally, (d) shows the mean value of integration steps n as a
function of learning epoch t.

remain, i.e., for many atoms the values of ∆ti follow the
same trend as observed for ∆0t = 0.9 fs and 1.7 fs, al-
though it is unclear whether they would converge to the
exactly same value in the long run using local gradient-
based optimizers. Most likely the optimization is trapped
in a different local minimum, going back to our discus-
sion about these potential limitations of our approach in
Section III C. For all initial values of ∆0t, we find that for
the number of integration steps n we approach n = 29,
i.e., our currently maximal allowed number of integration
steps, as shown in Fig. 8(d).

To gain some physical insight into the obtained values
for ∆ti, we plot in Fig. 9 the distribution of them for the
different atom types of alanine dipeptide, where the val-
ues of ∆ti are obtained after training with ∆0t = 0.9 fs.
The elements are ordered according to their mass, show-
ing some positive correlation between the mass of the
atom and the ideal timestep ∆ti. The distribution, how-
ever, is very broad in many cases. This implies that this
is indeed not a simple property of atom type only, but is
most likely determined by its local neighborhood and the
temperature. For a more detailed analysis, significantly

more data for different physical systems and tempera-
tures would be needed, which we take as an interesting
endeavor.

V. CONCLUSION & OUTLOOK

We have presented a framework that allows for the
gradient-based tuning of the simulation parameters of
Hamiltonian Monte Carlo. Its capabilities are evaluated
for the one dimensional harmonic oscillator that provides
crucial insights into the properties of our approach and
alanine dipeptide as a more realistic test system. The ex-
periments show that, in both systems, our set-up allows
for the optimization of the parameters of Hamiltonian
Monte Carlo, leading to fast simulations and low values
of the autocorrelation time without the need for an ex-
pensive grid search for ideal parameters. Compared to a
grid search, we observe a > 100 fold speed-up for alanine
dipeptide in obtaining good simulation parameters. This
success crucially depends on a local proxy loss for the au-
tocorrelation time for which we propose a form with only
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FIG. 9. Violin plot for the distribution of the timestep ∆t
for the four different atom types present in alanine dipeptide,
taken for the start with ∆0t = 0.9 fs. The elements are sorted
according to their atom weight, which is mentioned in the
brackets up to two digits.

one free parameter that works well for alanine dipeptide,
with potentially more general character for the applica-
tion in other molecular systems. The definition of the
loss and its generality is thus a critical ingredient to the
gradient-driven optimization, making it a prime candi-
date for further investigations.

We also show that jittering of the timestep avoids local
minima in the loss surface, which is crucial for the opti-
mization, which would otherwise get stuck in local basins
of attraction and would not be able to find good values.
Further, enabled by the gradient-driven optimization ap-
proach, we extend the parameters of the integrator for
alanine dipeptide by introducing timesteps that depend
on the atom index. We find that this can lead to lower
loss values as compared to using a global timestep, which
is also reflected in a ≈ 25% lower autocorrelation time
without additional computational overhead.

Investigating the performance improvement potential
for more complex systems is highly interesting. An inter-
esting use case of our algorithm are, for example dense,
polymer melts. The dynamics of these systems below the
glass transition temperature is very slow, thus providing
a challenging target system for simulation methods.48,49

It is unclear how much can be gained by the local opti-
mization in this case, and whether a significant speed-up
can be achieved. Another direction to further speed up
the simulations in this regard is the combination with
hand-crafted Monte Carlo updates, where Hamiltonian
Monte Carlo plays the role of a particular move. In such
a setting, the target is not only optimize the parameters
of Hamiltonian Monte Carlo, but also the parameters of
the distribution for the other moves and their relative
pick probability.

Also of interest are “data-driven” integrators, i.e., it
would be interesting to investigate much more heavily
parameterized versions of the integrator, for example by
including (graph) neural networks into the integrator.50

However here, in contrast to our method, the additional
cost of evaluating the neural networks has to be consid-
ered, which can reduce some advantages of a parametriza-
tion with many parameters.
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