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ABSTRACT

Efficiently creating a concise but comprehensive data set for training machine-learned interatomic potentials (MLIPs) is an

under-explored problem. Active learning (AL), which uses either biased or unbiased molecular dynamics (MD) simulations to

generate candidate pools, aims to address this objective. Existing biased and unbiased MD simulations, however, are prone to

miss either rare events or extrapolative regions—areas of the configurational space where unreliable predictions are made.

Simultaneously exploring both regions is necessary for developing uniformly accurate MLIPs. In this work, we demonstrate

that MD simulations, when biased by the MLIP’s energy uncertainty, effectively capture extrapolative regions and rare events

without the need to know a priori the system’s transition temperatures and pressures. Exploiting automatic differentiation, we

enhance bias-forces-driven MD simulations by introducing the concept of bias stress. We also employ calibrated ensemble-free

uncertainties derived from sketched gradient features to yield MLIPs with similar or better accuracy than ensemble-based

uncertainty methods at a lower computational cost. We use the proposed uncertainty-driven AL approach to develop MLIPs for

two benchmark systems: alanine dipeptide and MIL-53(Al). Compared to MLIPs trained with conventional MD simulations,

MLIPs trained with the proposed data-generation method more accurately represent the relevant configurational space for both

atomic systems.

Introduction

Computational techniques are invaluable for exploring com-
plex configurational and compositional spaces of molecular
and material systems. The accuracy and efficiency, how-
ever, depend on the chosen computational methods. Ab ini-
tio molecular dynamics (AIMD) simulations using density-
functional theory (DFT) provide accurate results but are com-
putationally demanding. Atomistic simulations with classical
force fields (FFs) offer a faster alternative but often lack accu-
racy. Thus, developing accurate and computationally efficient
interatomic potentials is a key challenge that has been suc-
cessfully addressed by machine-learned interatomic potentials
(MLIPs).1–3 An essential component of any MLIP is the
accurate encoding of the atomic system by a local represen-
tation, which depends on configurational (atomic positions)
and compositional (atomic types) degrees of freedom.4 Re-
cently, a wide range of machine learning approaches have
been introduced, including linear and kernel-based models,5–8

Gaussian approximation,9, 10 and neural network (NN) inter-
atomic potentials,11–18 all demonstrating remarkable success
in atomistic simulations.

The effectiveness of MLIPs, however, crucially relies on
training data sufficiently covering the relevant configurational
and compositional spaces.19, 20 Without such training data,
MLIPs cannot faithfully reproduce the underlying physics. An
open challenge, therefore, is the generation of comprehensive
training data sets for MLIPs, covering relevant configurational

and compositional spaces and ensuring that resulting MLIPs
are uniformly accurate across these spaces. This objective
must be realized while reducing the number of expensive DFT
evaluations, which provide reference energies, atomic forces,
and stresses. This challenge is further complicated by the
limited knowledge of physical conditions, such as temperature
and pressure, at which configurational changes occur.

To address this challenge, iterative active learning (AL)
algorithms can be used to improve the accuracy of MLIPs by
providing an augmented data set;21–26 see Fig. 1 (a). They
select the data most informative to the model, that is, atomic
configurations with higher energy and force uncertainties,
as estimated by the model. This data is drawn from con-
figurational and compositional spaces explored during, e.g.,
molecular dynamics (MD) simulations. Reference DFT ener-
gies, atomic forces, and stresses are evaluated for the selected
atomic configurations. Furthermore, energy and force uncer-
tainties indicate the onset of extrapolative regions—regions
where unreliable predictions are made—prompting the ter-
mination of the MD simulation and the evaluation of refer-
ence DFT values. In such a naive AL setting, covering the
configurational space and exploring extrapolative configura-
tions might require running longer MD simulations and defin-
ing physical conditions for observing slow configurational
changes (rare events).

Alternatively, enhanced sampling methods can significantly
speed up the exploration of the configurational space by us-
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Figure 1. A schematic overview of an AL algorithm for MLIP training. Training structures are selected from data gathered
during biased or unbiased MD simulations. (a) An AL experiment begins with training an MLIP in the first iteration using a
small set of randomly perturbed initial configurations. The current MLIP is employed in each iteration to run parallel MD
simulations. Each simulation continues until it reaches a predefined uncertainty threshold. Then, a batch of configurations is
selected from all trajectories. Reference energies and forces of these samples are evaluated using a DFT solver, updating the
training data set. The updated data set is employed for training the MLIP in the next iteration. (b) Adaptive biasing strategies
like metadynamics enhance the exploration of the configurational space. In metadynamics, exploration along manually defined
CVs is facilitated by adding Gaussian functions to a history-dependent bias (areas filled by blue, orange, and red colors).
However, even for well-defined CVs, exploring the configurational space of interest may require long simulation times due to
the diffusive motion along these CVs. (c) Uncertainty-biased MD aims to minimize uncertainty u (grey shaded area) related
to the actual error, thereby facilitating the exploration of the configurational space. In uncertainty-biased MD, we subtract
the MLIP’s energy uncertainty from the predicted energy (continuous black line) and run MD simulations using the altered
energy surface (dashed black line). Curved lines denote distinct MD trajectories. Unlike metadynamics, uncertainty-biased MD
operates without defining CVs and drives MD simulations toward high uncertainty regions in each iteration.

ing adaptive biasing strategies such as metadynamics;27–32

see Fig. 1 (b). However, metadynamics requires manually
selecting a few collective variables (CVs) which are assumed
to describe the system. The limited number of CVs restricts
exploration, as they might miss relevant transitions and parts
of the configurational space. In contrast, MD simulations

biased toward regions of high uncertainty can enhance the
discovery of extrapolative configurations.33, 34 A related work
utilizes uncertainty gradients with respect to atomic positions
for adversarial training of MLIPs.35 To obtain MLIPs that
are uniformly accurate across the relevant configurational
space, however, efficient exploration of both rare events and
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extrapolative configurations is necessary. The extent to which
uncertainty-biased MD can achieve this objective remains an
unexplored research area.

In this work, we demonstrate the capability of uncertainty-
biased MD to explore the relevant configurational space, in-
cluding fast exploration of rare events and extrapolative re-
gions; see Fig. 1 (c). We achieve this by exploring the CVs of
alanine dipeptide—a widely used model for protein backbone
structure. To assess the coverage of the CV space, we intro-
duce a measure using a tree-based weighted recursive space
partitioning. Furthermore, we extend existing uncertainty-
biased MD simulations by automatic differentiation (AD) and
propose a novel biasing technique that utilizes bias stresses ob-
tained by differentiating the model’s uncertainty with respect
to infinitesimal strain deformations. We assess the efficiency
of the proposed biasing technique by running MD simulations
at constant pressure (N pT statistical ensemble) and explor-
ing cell parameters of MIL-53(Al)—a flexible metal-organic
framework (MOF) featuring closed- and large-pore stable
states.

A key ingredient of any uncertainty-driven AL algorithm is
a sensitive measure of local structural changes for detecting
the onset of extrapolative regions. However, MLIP uncer-
tainties often underestimate actual errors, resulting in the
exploration of unphysical regions, negatively affecting MLIP
training. Thus, calibrated uncertainties are crucial for learning
high-quality MLIPs in a data-driven manner. In our setting,
we demonstrate that conformal prediction (CP) helps align the
highest force error with its corresponding uncertainty value.
This approach effectively makes MLIPs not underestimate
force errors, which is important for preventing MD simula-
tions from exploring unphysical configurations. Thus, CP-
based uncertainty calibration helps set reasonable uncertainty
thresholds without limiting the exploration of the configu-
rational space. In contrast, conventional approaches drive
MD away from high-uncertainty regions, which can hinder
exploration.36

Contrary to existing work,33, 34 which relies on ensembles
of MLIPs for uncertainty quantification, we use ensemble-free
uncertainties of NN-based MLIPs derived from gradient fea-
tures.37–39 These features can be interpreted as the sensitivity
of a model’s output to changes in its parameters. We demon-
strate that gradient features can be used to define uncertainties
of total and atom-based properties, such as energy and atomic
forces. To make gradient-based uncertainties computationally
efficient, we employ the sketching technique40 and reduce the
dimensionality of gradient features.

We further enhance configurational space exploration and
improve the computational efficiency of uncertainty-driven
AL by employing batch selection algorithms.38, 39 These algo-
rithms simultaneously select multiple atomic configurations
from trajectories generated during parallel MD simulations.
Batch selection algorithms enforce the informativeness and
diversity of the selected atomic structures. Thus, they ensure
the construction of maximally diverse training data sets.

Results

In the following, we first demonstrate the necessity of uncer-
tainty calibration on an example of MIL-53(Al) to constrain
MD simulations to physically reasonable regions of the con-
figurational space. Then, we present two complementary anal-
yses demonstrating the improved data efficiency of MLIPs
obtained by our uncertainty-driven AL approach, developing
MLIPs for alanine dipeptide and MIL-53(Al). Furthermore,
we investigate how uncertainty-biased MD enhances the ex-
ploration of the configurational space, utilizing bias forces
and stress. To benchmark our results, we draw a comparison
with MD run at elevated temperatures and pressures as well as
metadynamics simulations. The details on the ensemble-free
uncertainties (distance- and posterior-based ones derived from
sketched gradient features) and uncertainty-biased MD can be
found in the Methods section.

Calibrating uncertainties with conformal prediction

Total and atom-based uncertainties are typically poorly cali-
brated,41 meaning that they often underestimate actual errors.
The underestimation of errors is particularly dangerous when
dynamically generating candidate pools, as it may result in ex-
ploring unphysical configurations. Specifically, poor calibra-
tion complicates defining an appropriate uncertainty threshold
for prompting the termination of MD simulations and the eval-
uation of reference DFT energies, atomic forces, and stresses.
To address this issue, we utilize inductive CP, which computes
a re-scaling factor based on predicted uncertainties and predic-
tion errors on a calibration set. The confidence level 1−α in
CP is defined such that the probability of underestimating the
error is at most α on data drawn from the same distribution
as the calibration set. The detailed procedure can be found in
the Methods section.

Figure 2 demonstrates the correlation of maximal atom-
based uncertainties with maximal atomic force RMSEs for
the MIL-53(Al) test data set from Ref. 32. In the figure, trans-
parent hexbins represent uncertainties calibrated with a lower
confidence (α = 0.5; see Methods), while opaque ones depict
those calibrated with a higher confidence (α = 0.05). The pre-
sented uncertainties are derived from gradient features or an
ensemble of three MLIPs (see Methods) and calibrated using
CP with atomic force RMSEs. For posterior- and distance-
based uncertainties, which are unitless, the re-scaling with CP
ensures that the resulting uncertainties are provided in correct
units, i.e., eV/Å. Ensemble-based uncertainty quantification
already provides correct units, which are preserved by CP.
Equivalent results for alanine dipeptide can be found in the
Supplementary Information.

Figure 2 (top) demonstrates results for MLIPs trained on
45 MIL-53(Al) configurations, while five samples were addi-
tionally used for early stopping and uncertainty calibration.
Figure 2 (bottom) shows the results for MLIPs trained and val-
idated on 450 and 50 MIL-53(Al) configurations, respectively.
In both experiments, the training and validation samples were
selected from the data sets provided by Ref. 32. The first 50
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Figure 2. Correlation of maximal atom-based uncertainties with maximal atomic force RMSEs for MIL-53(Al). The results
are presented for the test data set from Ref. 32. All uncertainty quantification methods are calibrated using CP and atomic
force RMSEs. The top row shows the results of MLIPs trained using 45 atomic configurations, while five are additionally
used for early stopping and uncertainty calibration. The bottom row shows the results obtained with 450 and 50 MIL-53(Al)
configurations, respectively. The training and validation data are taken from Ref. 32. Transparent hexbin points represent
uncertainties calibrated with α = 0.5 (low confidence; see Methods), while opaque ones denote uncertainties calibrated with
α = 0.05 (high confidence). Calibrating uncertainties with a high confidence level helps align the largest actual error with the
corresponding uncertainty, shifting the hexbin points to or below the red diagonal line. This alignment is crucial for identifying
unreliable predictions and prompting the termination of MD simulations.

samples correspond to randomly perturbed MIL-53(Al) struc-
tures, while the remaining 450 are generated using metady-
namics combined with the incremental learning approach.32

The latter is an iterative learning algorithm that improves
MLIPs by training on configurations generated sequentially
over time, explicitly using the last simulation frame of atom-
istic simulations.

We observe that uncertainties calibrated with a lower con-
fidence level often underestimate actual errors. In this case,
MD simulations can explore unphysical regions before reach-
ing the uncertainty threshold, especially in cases with a small
correlation between uncertainties and actual errors. By em-
ploying CP with higher confidence, we help align the largest
prediction error with the corresponding uncertainty, thereby
improving its ability to identify the onset of extrapolative re-
gions. This alignment becomes apparent in Fig. 2, where CP
shifts the hexbin points to be on or below the diagonal line.

In Fig. 2 (top), we find that even training and calibrating

models with a small set of randomly perturbed atomic con-
figurations is sufficient for robust identification of unreliable
predictions. This result is crucial as we rely on such data sets
to initialize our AL experiments, eliminating the need for pre-
defined data sets.33, 34 Furthermore, we observe that calibrated
uncertainties from model ensembles tend to overestimate the
actual error to a greater extent compared to gradient-based
approaches. While this may not be critical when exploring
unphysical configurations, it can be wasteful, leading to a
premature termination of MD simulations. This trend is con-
sistent across all training and calibration data sizes. Lastly, the
results provided here and in the Supplementary Information
demonstrate that all uncertainty quantification methods per-
form comparably regarding Pearson and Spearman correlation
coefficients.

Performance of bias-forces-driven active learning
Exploring the configurational space of complex molecular
systems, particularly those with multiple stable states, is es-
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Figure 3. Comparison of AL approaches employing biased and unbiased MD simulations to generate the candidate pool of
atomic configurations for alanine dipeptide. Results are provided for the posterior-based uncertainty quantification derived
from sketched gradient features. Unlike unbiased MD simulations, which rely on atom-based uncertainties to terminate MD
simulations, biased MD simulations use both total and atom-based uncertainties for biasing MD simulations and prompting
their termination, respectively. We use three metrics to assess the performance of our AL approaches: (a) Coverage of the CV
space; (b) Energy RMSE; and (c) Force RMSE. All RMSEs are evaluated on the alanine dipeptide test data set; see Methods.
Shaded areas denote the standard deviation across five independent runs. The alanine dipeptide molecule, including its CVs, is
shown as an inset in (a). The color code of the inset molecule is C grey, O red, N blue, and H white. (d) Ramachandran plots
demonstrating the CV spaces explored by the four AL experiments. Biased MD simulations achieve exceptional performance,
close to those of MD simulations conducted at 1200 K, without a priori knowledge of transition temperatures between stable
states. The CV space covered by uncertainty-biased MD simulations at 300 K matches that of unbiased simulations at 1200 K,
significantly outperforming the coverage achieved by unbiased MD simulations at 300 K and 600 K.

sential for developing accurate and robust MLIPs. We apply
bias-forces-driven MD simulations combined with AL to de-
velop MLIPs for alanine dipeptide in vacuum. This dipeptide
exhibits two stable conformers characterized by the backbone
dihedral angles φ and ψ (as shown in the inset of Fig. 3): the
C7eq state with φ ≈ −1.5 rad and ψ ≈ 1.19 rad and the Cax

state with φ ≈ 0.9 rad and ψ ≈−0.9 rad.42 We use unbiased
MD simulations as the baseline to create the candidate pool
for AL. We employ the AMBER ff19SB force field for refer-
ence energy and force calculations,43 as implemented in the
TorchMD package using PyTorch.44, 45

Each AL experiment starts with training an MLIP with eight
alanine dipeptide configurations randomly perturbed from its
initial configuration in the C7eq state. Trained MLIPs are then

used to run eight parallel MD simulations, initialized from the
initial configuration or configurations selected in later itera-
tions. Each MD simulation runs until reaching an empirically
defined uncertainty threshold of 1.5 eV/Å. A lower threshold
value may result in slower CV space exploration, while a
larger one would lead to the exploration of unphysical config-
urations. The maximum data set size, comprising training and
validation data, is limited to 512 configurations. Biased (bias-
forces-driven) and unbiased MD simulations are performed
using the canonical (NV T ) statistical ensemble within the
ASE simulation package.46 Unbiased MD simulations are run
with the Langevin thermostat at temperatures of 300 K, 600 K,
and 1200 K, whereas biased simulations are performed at a
constant temperature of 300 K. We have chosen an integration
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Table 1. CV space coverage, atomic energy (E-) and atomic force (F-) RMSEs, as well as position (Pos.) and uncertainty
(Unc.) ACTs for alanine dipeptide experiments conducted with posterior-based uncertainties. CV space coverage, E- and
F-RMSEs are reported for MLIPs obtained at the end of each experiment, while ACTs are computed using the entire trajectory
obtained throughout the experiment. E-RMSE is given in meV/atom, while F-RMSE is in eV/Å. ACTs are provided in ps. For
biased MD, we compare two cases: one with (w.) biasing hydrogen atoms and one without (w/o.).

Experiment CV space cov. E-RMSE F-RMSE Pos. ACT Unc. ACT

unbiased MD (300 K) 0.58 ± 0.03 30.29 ± 5.47 0.149 ± 0.019 2.07 ± 0.11 327.11 ± 8.69
unbiased MD (600 K) 0.89 ± 0.00 26.03 ± 2.23 0.116 ± 0.012 1.23 ± 0.02 257.88 ± 22.01
unbiased MD (1200 K) 0.97 ± 0.01 1.47 ± 0.09 0.055 ± 0.002 0.74 ± 0.02 21.41 ± 4.91

biased MD (300 K, τ = 0.25, w. H) 0.87 ± 0.02 5.09 ± 5.40 0.082 ± 0.016 2.08 ± 0.13 19.38 ± 7.42

biased MD (300 K, τ = 0.25, w/o. H) 0.94 ± 0.01 1.97 ± 0.88 0.071 ± 0.003 0.69 ± 0.04 52.79 ± 19.40

time step of 0.5 fs and set a maximum of 20,000 steps for
an MD simulation. A biasing strength of τ = 0.25 was also
chosen for biased AL experiments. In reference calculations,
we employ a force threshold of 20 eV/Å to exclude unphysi-
cal structures, mainly encountered at high biasing strengths
(equivalently, a smaller integration time step could be used).
All AL experiments have been repeated five times.

Figure 3 demonstrates the performance of MLIPs obtained
for alanine dipeptide depending on the number of acquired
configurations. Table 1 presents error metrics evaluated for
MLIPs at the end of each experiment. Here, we provide re-
sults for the posterior-based uncertainty. Equivalent results
for other uncertainty methods are presented in the Supplemen-
tary Information. Figure 3 (a) presents the coverage of the
CV space defined by the two dihedral angles (φ and ψ). We
measure the coverage of the respective space by a tree-based
weighted recursive space partitioning; see Methods. AL ex-
periments combined with unbiased MD simulations at 1200 K
serve as the upper-performance limit for MLIPs in the case
of alanine dipeptide, achieving the highest coverage of 0.97
after acquiring 512 configurations. Increasing temperature
even further while using interatomic potentials, which allow
for bond breaking and formation, might lead to the degrada-
tion of the molecule. Uncertainty-biased MD simulations at
300 K result in slightly lower coverage values, surpassing the
coverages achieved by unbiased counterparts at 300 K and
600 K.

Furthermore, biased MD simulations outperform unbiased
dynamics at 1200 K, efficiently covering the CV space be-
fore acquiring about 200 configurations. This observation is
attributed to the gradual increase in driving forces induced
by the uncertainty bias, resulting in a more gradual distor-
tion of the atomic structure. In contrast, high-temperature
unbiased simulations perturb the system more strongly and
rapidly enter extrapolative regions without exploring relevant
configurational changes. Thus, high-temperature simulations
may cause the degradation of the investigated atomic systems,
unlike uncertainty-biased dynamics.

Figures 3 (b) and (c) present energy and force RMSEs

evaluated on the alanine dipeptide test data set; see Methods.
Consistent with the findings in Fig. 3 (a), AL approaches com-
bined with biased MD simulations at 300 K outperform their
unbiased counterparts at 300 K and 600 K once they acquire
about 100 configurations. Biased AL experiments achieve
energy RMSE of 1.97 meV/atom, close to those observed
in high-temperature MD simulations, surpassing others by
a factor of more than 13. A similar trend is observed for
force RMSE. Biased AL experiments achieve an RMSE of
0.071 eV/Å, outperforming their counterparts at 300 K and
600 K by factors of 2.1 and 1.6, respectively. These results
demonstrate the efficiency of uncertainty-biased dynamics in
exploring the configurational space and developing accurate
and robust MLIPs.

Biased AL experiments achieve exceptional performance
without a priori knowledge of transition temperatures between
stable states; see Fig. 3 (d). Defining transition temperatures
requires running MD simulations at different temperatures to
explore the relevant configurational space without degrading
the atomic system. In contrast, there is no strong depen-
dence of the performance of our approach on biasing strength
(see the Supplementary Information), which has to be cho-
sen within a moderate range. Our results offer evidence of
rare event exploration (for alanine dipeptide, the exploration
of both stable states) through uncertainty-biased dynamics.
The following section will present a detailed analysis of the
exploration rates.

Additionally, we have identified how to further improve our
biased MD simulations by making biasing strengths species
dependent; see the Supplementary Information. The results
presented in this section, achieved with a biasing strength of
zero for hydrogen atoms, outperform settings where all atoms
are biased equally, with improvements by a factor of 1.08 in
coverage and 1.15 in force RMSE; see Table 1. Thus, a more
sophisticated data-driven redistribution of biasing strengths
can further enhance the performance of bias-forces-driven
MD simulations.
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Exploration rates for collective variables of alanine
dipeptide

We have observed that uncertainty-biased MD simulations
effectively explore the configurational space of alanine dipep-
tide, defined by its CVs. Figure 4 evaluates the extent to which
the introduced bias forces in MD simulations accelerate their
exploration. In Fig. 4 (a), we present the coverage of the CV
space as a function of simulation time, i.e., as a function of the
effective number of MD steps. The figure demonstrates that
uncertainty-driven AL experiments at 300 K outperform unbi-
ased experiments at 300 K and 600 K. They achieve the same
coverage in considerably shorter simulation times, thereby en-
hancing exploration rates by a factor of larger than two. At the
same time, biased MD simulations yield results comparable
to those obtained from unbiased MD simulations at 1200 K.
Thus, we can argue that uncertainty-biased MD explores the
relevant configurational space at a similar rate to unbiased
MD conducted at 1200 K.

The exploration rates estimated from Fig. 4 (a) provide an
approximate measure of how uncertainty-biased dynamics ac-
celerate the exploration of the configurational space. To offer
a more thorough assessment, we examine auto-correlation
functions (ACFs) computed for both position and uncertainty
spaces in Figures 4 (b) and (c), where a faster decay corre-
sponds to a faster exploration of the respective space. We
compute ACFs using concatenated MD trajectories from all
AL iterations as they cover the explored configurational space
during the entire experiment. Additionally, we calculate the
auto-correlation time (ACT) for each experiment. For the defi-
nition of ACF and ACT, we refer to Methods. Table 1 presents
ACTs for all AL experiments. Smaller ACTs correspond to
a faster decay of ACFs, indicating a faster exploration of the
respective spaces.

Using the computed ACTs, we conclude that biased AL
experiments at 300 K explore position and uncertainty spaces
two to six times faster than the unbiased MD simulations
at 300 K and 600 K. Compared to the unbiased dynamics
at 1200 K, they achieve comparable exploration rates in the
position space and rates lower by a factor of two for the
uncertainty space. Furthermore, we observed that biasing
hydrogen atoms results in reduced uncertainty ACTs com-
pared to the experiments where hydrogen atoms remained
unbiased. However, explicitly biasing hydrogen atoms is less
efficient in exploring the position space by a factor of three.
Thus, shorter uncertainty ACTs of unbiased MD simulations
at 1200 K can be attributed to a stronger distortion of bonds,
including hydrogen atoms, resulting in fast exploration of
extrapolative regions. While this effect is unfavorable for the
enhanced exploration of slow modes, such as the CVs of ala-
nine dipeptide, in a biased MD simulation, it may be necessary
to consider incorporating small, non-zero biasing strengths
for hydrogen atoms to ensure the robustness of MD simula-
tions at elevated temperatures. Interestingly, we observe that
uncertainty-biased MD simulations manage to sample two
slow modes in alanine dipeptide, even though 27 degrees of

freedom (corresponding to the heavy C, N, and O atoms) were
effectively biased, demonstrating their remarkable efficiency.

To gain insight into the exploration of the CV space during
the AL experiments, we refer to Figs. 4 (d) and (e), which
illustrate the time evolution of the maximal atom-based uncer-
tainty and the coverage of the sampled CV space for selected
AL iterations. Biased MD simulations consistently explore
configurations with higher uncertainty values than their un-
biased counterparts at 300 K and 600 K. Furthermore, bias
forces not only drive the exploration toward both stable states
of alanine dipeptide but also facilitate transitions between
them. These results are on par with unbiased MD simula-
tions at 1200 K, indicating that MD simulations driven by
bias forces reduce the uncertainty level uniformly across the
relevant configurational space. Due to the direct correlation
between uncertainties and actual errors, we can argue that
uncertainty-driven AL generates uniformly accurate MLIPs
across the relevant configurational space.

Performance of bias-stress-driven active learning

Generating training data for bulk material systems with large
unit cells and multiple stable states poses a significant chal-
lenge in developing MLIPs. Therefore, we assess the perfor-
mance of the bias-stress-driven AL applied to MIL-53(Al),
a flexible MOF that undergoes reversible, large-amplitude
volume changes under external stimuli, such as temperature
and pressure (see inset of Fig. 5). MIL-53(Al) features two
stable phases: the closed-pore state with a unit cell volume of
V ∼ 830 Å3 and the large-pore state with V ∼ 1419 Å3. For
reference energy, force, and stress calculations, we use the
CP2K simulation package (version 2023.1)47 and DFT at the
PBE-D3(BJ) level.48, 49 Our baseline for generating the candi-
date pool for AL involves unbiased MD and metadynamics,32

which uses an adaptive biasing strategy for cell parameters of
MIL-53(Al).

In each AL experiment, we start with 32 MIL-53(Al) con-
figurations randomly perturbed around its closed-pore state,
with 90 % reserved for training. Trained MLIPs are then used
to perform 32 parallel MD simulations, each running until it
reaches an uncertainty threshold of 1.0 eV/Å. The maximum
data set size is limited to 512 configurations, comprising train-
ing and validation data. Both biased (bias-stress-driven) and
unbiased MD simulations use the isobaric-isothermal form of
the Nosé–Hoover dynamics.50, 51 Unbiased MD simulations
are carried out at 600 K and 0 MPa, as well as ± 250 MPa
(half of the simulations each), while biased simulations are
performed at 600 K and 0 MPa. The characteristic time scales
of the thermostat and barostat are set to 0.1 ps and 1 ps, re-
spectively. We have chosen an integration time step of 0.5 fs
and set a maximum of 20,000 MD steps for an MD simula-
tion. A stress-biasing strength of τ = 0.5 is used in biased
AL experiments. In reference calculations, we employ a force
threshold of 20 eV/Å to exclude strongly distorted structures.
We use the data set from Ref. 32 as a metadynamics-generated
baseline and select the first 500 sequentially generated config-
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Figure 4. Evaluation of CV space exploration rates using biased and unbiased MD simulations for alanine dipeptide. Here, MD
simulations generate candidate pools of atomic configurations for AL algorithms. Results are provided for the posterior-based
uncertainty quantification derived from sketched gradient features. Unlike unbiased MD simulations, which rely on atom-based
uncertainties to terminate MD simulations, biased MD simulations use both total and atom-based uncertainties for biasing MD
simulations and prompting their termination, respectively. We use three metrics to asses the exploration rates: (a) Coverage of
the CV space; (b) Auto-correlation functions of atomic positions; and (c) Auto-correlation functions of atom-based uncertainties.
Shaded areas denote the standard deviation across five independent runs. (d) Time evolution of the maximal atom-based
uncertainty within an AL iteration and the entire experiment. Time evolution is shown for one of the eight MD simulations. The
dashed gray line represents the uncertainty threshold of 1.5 eV/Å. The insets show configurations that reached the uncertainty
threshold for uncertainty-biased MD. (e) Ramachandran plots illustrate the exploration of the CV space over AL iterations and
the entire experiment. Ramachandran plots are presented for unbiased MD simulations at 300 K and 1200 K and biased MD
simulations at 300 K. Simulation time refers to the effective number of MD steps (× 0.5 fs) required to reach the final coverage,
while lag time denotes the time interval between two successive MD frames. Biased MD simulations at 300 K exhibit at least
two times higher exploration rates than their unbiased counterparts at 300 K and 600 K. Their exploration rates are comparable
to those of unbiased MD simulations at 1200 K, with the advantage of gradually distorting the molecule, reducing the risk of its
degradation.
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Figure 5. Comparison of AL approaches employing biased and unbiased MD simulations to generate the candidate pool
of atomic configurations for MIL-53(Al). Results are provided for the posterior-based uncertainty quantification derived
from sketched gradient features. Unlike unbiased MD simulations, which rely on atom-based uncertainties to terminate MD
simulations, biased MD simulations use both total and atom-based uncertainties for biasing MD simulations and prompting
their termination, respectively. We use three metrics to assess the performance of our AL approaches: (a) Energy RMSE; (b)

Force RMSE; and (c) Stress RMSE. All RMSEs are evaluated on the MIL-53(Al) test data set.32 Shaded areas denote the
standard deviation across three independent runs, except for metadynamics. For it, shaded areas denote standard deviation
across three randomly initialized MLIPs. (d) Volume distribution for atomic configurations acquired during MD at 600 K,
along with volume-dependent energy, force, and stress RMSEs. (e) Volume distribution for configurations acquired during MD
at 300 K, along with volume-dependent energy, force, and stress RMSEs. We employ a temperature of 300 K to reduce the
probability of exploring the large-pore state of MIL-53(Al). Bias-stress-driven MD simulations outperform metadynamics-based
simulations with adaptive biasing of the cell parameters. Metadynamics aims to cover the volume space uniformly. In contrast,
uncertainty-biased MD generates training data sets that reduce force and stress RMSEs uniformly. Additionally, biased MD
simulations enhance the exploration of closed- and large-pore states of MIL-53(Al) shown in the inset of (d).
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Table 2. Atomic energy (E-), atomic force (F-), and stress (S-) RMSEs, as well as position (Pos.) and uncertainty (Unc.)
ACTs for MIL-53(Al) experiments conducted with posterior-based uncertainties. E-, F-, and S-RMSEs are reported for MLIPs
obtained at the end of each experiment, while ACTs are computed using the entire trajectory sampled throughout the experiment.
E-RMSE is given in meV/atom, F-RMSE in eV/Å, and S-RMSE in MPa. ACTs are provided in ps.

Experiment E-RMSE F-RMSE S-RMSE Pos. ACT Unc. ACT

T = 600 K

unbiased MD (0 MPa) 1.17 ± 0.36 0.058 ± 0.002 90.81 ± 32.82 10.60 ± 9.54 88.05 ± 2.53
unbiased MD (250 MPa) 0.57 ± 0.05 0.052 ± 0.001 42.72 ± 1.37 2.08 ± 0.58 66.32 ± 2.02
Metadynamics (0 MPa) 0.58 ± 0.10 0.058 ± 0.002 74.83 ± 11.89 – –
biased MD (0 MPa, τ = 0.5) 0.57 ± 0.08 0.051 ± 0.001 36.60 ± 1.46 2.75 ± 0.46 44.87 ± 14.08

T = 300 K

unbiased MD (0 MPa) 0.88 ± 0.20 0.056 ± 0.001 58.57 ± 5.94 3.45 ± 4.06 99.25 ± 10.34
unbiased MD (250 MPa) 0.48 ± 0.01 0.054 ± 0.000 39.88 ± 1.76 1.86 ± 0.14 54.56 ± 4.82
biased MD (0 MPa, τ = 0.5) 0.49 ± 0.09 0.052 ± 0.001 33.89 ± 3.06 42.92 ± 14.18 26.89 ± 8.94

urations. All AL experiments are repeated three times, except
for metadynamics, which was run once.32 For metadynamics,
we train three MLIPs initialized using different random seeds.

Figures 5 (a)–(c) demonstrate the performance of MLIPs
developed for MIL-53(Al) depending on the number of ac-
quired configurations. Table 2 presents error metrics evaluated
for MLIPs at the end of each experiment. Here, we present re-
sults for the posterior-based uncertainty. Equivalent results for
other uncertainty quantification methods are presented in the
Supplementary Information. We observe that MLIPs trained
with configurations generated using metadynamics outper-
form the others for data set sizes below 200 samples. This
difference in performance can be attributed to how perturbed
configurations are generated and the differing experimental
settings between incremental learning and AL applied here.
Bias-stress-driven AL outperforms metadynamics-based in-
cremental learning after acquiring about 200 atomic configura-
tions regarding force and stress RMSEs. Metadynamics-based
experiments achieve performance on par with unbiased AL ex-
periments conducted at 0 MPa after they reach a data set size
of 200 configurations. For uncertainty-biased MD, the force
RMSE improves by a factor of 1.14, and the stress RMSE
improves by a factor of two. Furthermore, AL experiments
employing biased MD simulations outperform unbiased MD
simulations at 250 MPa regarding stress RMSE. Therefore,
we can argue that bias-stress-driven MD generates a data set
that better represents the relevant configurational space of
flexible MOFs without a priori knowing the transition pres-
sure, compared to MLIPs trained with conventional MD and
metadynamics simulations.

Figures 5 (d) and (e) show the main advantage of biased
MD simulations over unbiased and metadynamics-based ap-
proaches. In Fig. 5 (e), we reduce the temperature to 300 K
and initiate the AL experiments with 256 configurations, each
having a unit cell volume below 1200 Å3 (drawn from Ref. 32).

Using a lower temperature and learning the configurational
space around the closed-pore state is required to decrease
the probability of MD simulations exploring the large-pore
stable state of MIL-53(Al). In contrast, we found that us-
ing randomly perturbed atomic configurations can lead to
underestimated energy barriers by MLIPs, thus facilitating the
transition between both stable states in initial AL iterations.

While exploring the large-pore state less frequently than
metadynamics-based counterparts, bias-stress-driven MD sim-
ulations span a broader range of volumes and effectively re-
duce energy, force, and stress RMSEs uniformly across the
entire volume space. Compared to zero-pressure unbiased MD
simulations, it effectively biases dynamics toward exploring
the large-pore state. However, since this state can be modeled
using atomic environments from the closed-pore state, bias
stress does not favor exploration of the former. Instead, it
drives the dynamics toward smaller volumes where all other
approaches tend to predict energy, force, and stress values
with higher errors.

These results show that uncertainty-biased MD simulations
aim to reduce errors across the relevant configurational space
and accelerate the simultaneous exploration of extrapolative
regions and transitions between stable states. In contrast,
metadynamics may require longer simulation times to gen-
erate equivalent candidate pools as it focuses on generating
configurations uniformly distributed in the CV space, which is
unnecessary for developing MLIPs. Note that metadynamics
was not initially designed for generating training data sets,
whereas uncertainty-biased MD offers an excellent tool for
this task.

Exploration rates for cell parameters of MIL-53(Al)

Figure 6 assesses the extent to which uncertainty-biased (bias
stress) MD simulations enhance the exploration of the exten-
sive volume space of MIL-53(Al). In Fig. 6 (a), we observe
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Figure 6. Evaluation of configurational space exploration rates using biased and unbiased MD simulations for MIL-53(Al).
Here, MD simulations generate candidate pools of atomic configurations for AL algorithms. Results are provided for the
posterior-based uncertainty quantification derived from sketched gradient features. Unlike unbiased MD simulations, which rely
on atom-based uncertainties to terminate MD simulations, biased MD simulations use both total and atom-based uncertainties
for biasing MD simulations and prompting their termination, respectively. We use three metrics to asses the exploration rates:
(a) Volume distribution of configurations sampled throughout the experiment; (b) Auto-correlation functions for positions;
and (c) Auto-correlation functions for atom-based uncertainties. Shaded areas denote the standard deviation across three
independent runs. (d) Time evolution of the volume distribution of configurations acquired during training and of energy, force,
and stress RMSEs evaluated on the test data set depending on the unit cell volume. Bias-stress-driven MD simulations achieve
exploration rates comparable to those of high-pressure unbiased MD simulations. They efficiently reduce RMSEs uniformly
across the entire volume space, even in the early stages of AL, surpassing the performance of unbiased simulations.
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Figure 7. ACF for positions obtained by running biased and
unbiased MD simulations at 300 K for MIL-53(Al). Shaded
areas denote the standard deviation across three independent
runs. We employ a temperature of 300 K to reduce the prob-
ability of exploring the large-pore state of MIL-53(Al). The
ACF exhibits strongly correlated motions attributed to volume
fluctuations induced by the bias stress. These fluctuations can
be modeled by a sine wave with a period twice the length of
the simulation. The red line denotes a sine wave with a larger
noise amplitude than the one denoted by the blue line.

a higher frequency of transitions between stable states for bi-
ased MD simulations than for zero-pressure MD counterparts.
Additionally, uncertainty-biased simulations favor the explo-
ration of smaller MIL-53(Al) volumes, in line with the results
shown in Fig. 5. Figures 6 (b) and (c) present ACFs for both
positions and uncertainty spaces, with estimated ACTs pro-
vided in Table 2. These results indicate that bias-stress-driven
MD is at least as efficient as high-pressure MD simulations in
exploring both spaces. Similar to alanine dipeptide, a faster
decay of ACFs corresponds to smaller ACTs, indicating a
faster exploration of the respective space.

Figure 6 (d) demonstrates the time evolution of energy,
force, and stress RMSEs and reveals that local atomic envi-
ronments in the large-pore state are effectively represented
by those in the closed-pore state, explaining the stronger pref-
erence for smaller volumes as observed in Figure 6 (a) and
Figures 5 (d) and (e). This effect is evident from the low force
and stress RMSEs in the early iterations for the large-pore
state, even though this state has not been explored yet. Further-
more, uncertainty-biased simulations consistently outperform
their counterparts, starting from the early stages, by uniformly
reducing errors across the test volume space.

From these results and the findings in Fig. 5 (d), we con-
clude that bias-stress-driven MD simulations significantly
enhance the exploration of the relevant configurational space,
including rare events (i.e., transitions between stable phases).

However, in Table 2, we obtained longer ACTs for biased
dynamics at 300 K compared to its unbiased counterparts,
which seems to contradict our previous arguments. When
examining the ACF shown in Fig. 7, it becomes evident that
a stronger correlation in the position space results from the
volume fluctuations induced in MIL-53(Al) by the bias stress.
These fluctuations can be represented by a sine wave with
additive random noise and a period twice the simulation’s
length; see Methods. This observation implies that bias stress
induces correlated motions in the MIL-53(Al) system, causing
it to expand and contract alternately for half of the simula-
tion time. This phenomenon results in periodic exploration
of both the boundaries of small and large volumes within the
configurational space.

In contrast to the conventional approaches, including the
bias-forces-driven MD simulations, which aim for uncorre-
lated random-walk-like behavior of predetermined CVs to
capture configurational changes, our method introduces cor-
related motion that explores the entire configurational space
without prior knowledge. Increasing the amplitude of random
noise in the sine wave reduces the amplitude of these fluc-
tuations in the ACF, similar to raising the temperature in an
atomic system. This decrease in the amplitude explains why
this effect is not observed in Fig. 6 (b).

Discussion

Our present study investigates a new paradigm for data set gen-
eration, facilitating the development of high-quality MLIPs for
chemically complex atomic systems. We employ uncertainty-
biased MD simulations to generate candidate pools for AL
algorithms. Our results show, for the first time, that applying
uncertainty bias facilitates simultaneous exploration of extrap-
olative regions and rare events. Efficient exploration of both is
crucial in constructing comprehensive training datasets, con-
sequently enabling the development of uniformly accurate
MLIPs. In contrast, classical enhanced sampling techniques
(e.g., metadynamics) or unbiased MD simulations at elevated
temperatures and pressures cannot simultaneously explore
extrapolative regions and rare events. Enhanced sampling
techniques were designed to ensure the reconstruction of the
underlying Boltzmann distribution. However, this property is
unnecessary for data set generation and limits their effective-
ness in this context.

Furthermore, the performance of enhanced sampling tech-
niques depends on the manual definition of hyper-parameters,
e.g., CVs for metadynamics. Setting them requires expert
knowledge because the wrong choice can limit the range of
explored configurations. In contrast, uncertainty-biased MD
simulations need to define an uncertainty threshold and bias-
ing strength. Both parameters influence the exploration rate
of configurational space without constraining the space that
can be explored. The biasing strength is advantageous over
defining transition temperatures and pressures as it reduces the
risk of degrading the atomic system. Furthermore, employing
species-dependent biasing strength can restrict biasing in sen-
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sitive configurational regions, e.g., biasing hydrogen atoms.
Simultaneously, it enables targeted biasing of pre-defined
atom groups similar to metadynamics.

We compare uncertainty quantification methods, includ-
ing the variance of an ensemble of MLIPs, and ensemble-
free methods derived from sketched gradient features, focus-
ing on configurational space exploration rates and generating
uniformly accurate potentials; see Supplementary Informa-
tion. Overall, gradient-based approaches yield MLIPs with
similar performance to those created using ensemble-based
uncertainty while significantly reducing the computational
cost of uncertainty quantification. For MIL-53(AL), we find
that ensemble-based uncertainties overestimate the force error
stronger than gradient-based approaches, resulting in earlier
termination of MD simulations and potentially worse con-
figurational space exploration. For alanine dipeptide, using
an ensemble of MLIPs improves their robustness during MD
simulations, facilitating CV space exploration. Therefore,
improving the robustness of a single MLIP during an MD
simulation is a promising research direction,52 combined with
the proposed ensemble-free techniques.

While this study thoroughly investigates AL with
uncertainty-biased MD for generating candidate pools, further
research is still necessary. For example, one should analyze
how well uncertainty-biased MD explores a configurational
space with multiple stable states and how it identifies the
respective slow modes using solely uncertainty bias. Also,
assessing the uniform accuracy of resulting MLIPs and the
enhanced exploration in higher-dimensional CV spaces re-
mains challenging. Although uncertainty-biased MD proves
efficient, it comes with an additional computational cost, in-
creasing the inference times by 1.3 to 1.7 compared to unbi-
ased MD, mainly due to calculating uncertainty gradients. In
cases with known CVs or transition conditions, this increase
in the computational cost might exceed the benefits. Lastly,
unlike MD, Monte Carlo simulations generally allow signifi-
cant configurational changes, eliminating the need to explore
intermediate transition paths. Combined with uncertainty
bias, they might potentially avoid exploring intermediate, low-
uncertainty transition regions, improving the efficiency of
uncertainty-driven data generation.

Methods

Machine-learned interatomic potentials

We define an atomic configuration, S = {ri,Zi}Nat
i=1, where

ri ∈ R
3 are Cartesian coordinates and Zi ∈ N is the atomic

number of atom i, with a total of Nat atoms. Our focus lies on
interatomic NN potentials, which map an atomic configuration
to a scalar energy E. The mapping is denoted as fθθθ : S 7→ E ∈
R, where θθθ denotes the trainable parameters. By assuming the
locality of interatomic interactions, we decompose the total
energy of the system into individual atomic contributions11

E (S,θθθ) =
Nat

∑
i=1

Ei (Si,θθθ) , (1)

where Si is the local environment of atom i, defined by the
cutoff radius rc. The trainable parameters θθθ are learned from
atomic data sets containing atomic configurations and their
energies, atomic forces, and stress tensors.

Gradient-based uncertainties

We quantify the uncertainty of a trained MLIP by expanding
its energy per atom Eat = E/Nat around the locally optimal
parameters θθθ ∗37–39

Eat (S,θθθ)≈ Eat (S,θθθ
∗)+(θθθ −θθθ ∗)⊤ ∇θθθ Eat (S,θθθ)

∣
∣
∣
θθθ=θθθ∗

︸ ︷︷ ︸

=φ(S)

, (2)

where S denotes an atomic configuration as defined in the
previous section. Gradient features φ (S) ∈ R

Nfeat can be inter-
preted as the sensitivity of the energy to small perturbations
of the parameters. Here, Nfeat is the number of trainable pa-
rameters of the MLIP, and Nat is the number of atoms. We
employ the energy per atom Eat in Eq. (2), as it accounts for
the extensive nature of the energy that scales proportionally
with the system size. This choice ensures that uncertainties
defined using gradient features do not favor the selection of
larger structures. Gradient features can also be expressed
as the mean of their atomic contributions: φ = ∑

Nat
i=1 φi/Nat.

For atomic gradient features φi, using the energy per atom in
Eq. (2) is unnecessary. Here, we use φ = φ (S) and φi = φi (Si),
with Si denoting the local environment of an atom i, to sim-
plify the notation. Thus, gradient features can be used to
quantify uncertainties in total and atom-based properties of an
atomic system, such as energy and atomic forces, respectively.

Particularly, we define the atom-based model’s uncertainty
(atomic forces) by employing squared distances between
atomic gradient features

u2
i = min

φ ′
j∈Φtrain

∥
∥
∥

(
φi −φ ′

j

)
∥
∥
∥

2

2
. (3)

Alternatively, we consider Bayesian linear regression in
Eq. (2) and compute the posterior uncertainty as

u2
i = λ 2φ⊤

i

(

Φ⊤
trainΦtrain +λ 2I

)−1
φi, (4)

where λ is the regularization strength. Here, we define
Φtrain = φi (Xtrain) ∈R

(Nat·Ntrain)×Nfeat with Xtrain denoting the
local atomic environments of configurations in the training
set of size Ntrain. In this work, we refer to our uncertainties as
distance- and posterior-based uncertainties. Equivalent results
can be obtained for total uncertainties (energy), employing
gradient features φ = ∑

Nat
i=1 φi/Nat with Φtrain = φ (Xtrain) ∈

R
Ntrain×Nfeat .
Calculating uncertainties using gradient features is com-

putationally challenging, especially for the posterior-based
approach, for which a single uncertainty evaluation scales
as O

(
N2

feat

)
. Therefore, we employ the sketching tech-

nique40 to reduce the dimensionality of gradient features,
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i.e., φ
rp
i = Uφi ∈ R

Nrp with Nrp and U ∈ R
Nrp×Nfeat denoting

the number of random projections and a random matrix, re-
spectively.38, 39 In previous work,38 we have observed that
uncertainties derived from sketched gradient features demon-
strate a better correlation with RMSEs of related properties
than those based on last-layer features.37, 53, 54 More details
on sketched gradient features can be found in the following
sections. Atom-based uncertainties, defined by the distances
between gradient features, scale linearly with both the system
size and the number of training structures, i.e., as O (NatNtrain).
Consequently, they require an additional approximation to en-
sure computational efficiency. To address this, we employed
the batch selection algorithm that maximizes distances within
the training set, allowing us to identify the most representative
subset of atomic gradient features; see the following sections.

Uncertainty-biased molecular dynamics

Following previous works,33, 34 we define a biased energy as

Ebiased (S,θθθ) = E (S,θθθ)− τu(S,θθθ) , (5)

where τ denotes the biasing strength. The negative sign en-
sures that negative uncertainty gradients with respect to atomic
positions (bias forces) drive the system toward high uncer-
tainty regions; see Fig. 1 (c). In this work, we use AD to
compute bias forces acting on atom i, denoted as −∇ri

u(S,θθθ)
with atomic positions ri. The total biased force on atom i

reads

Fbiased
i (S,θθθ) = Fi (S,θθθ)+ τ∇ri

u(S,θθθ) . (6)

These biased forces can be used for MD simulations in, e.g.,
canonical (NV T ) statistical ensemble to bias the exploration
of the configurational space.

In the case of bulk atomic systems, the configurational
space often includes variations in cell parameters, which de-
fine the shape and size of the unit cell, necessitating enhanced
exploration of them. For this purpose, we propose the concept
of bias stress, defined by

1
V

∇εεε u(S,θθθ)|εεε=0

with V denoting the volume of the periodic cell. This expres-
sion is motivated by the definition of the stress tensor.55 Here,
u(S,θθθ) denotes the uncertainty after a strain deformation of
the bulk atomic system with the symmetric tensor εεε ∈ R

3×3,
i.e., r̃=(1+ εεε) ·r. The calculation of the bias stress is straight-
forward with AD. The total biased stress reads

σσσbiased (S,θθθ) = σσσ (S,θθθ)− τ
1
V

∇εεε u(S,θθθ)|εεε=0 . (7)

The bias stress tensor in Eq. (7) effectively reduces the internal
pressure in the bulk atomic system. We propose combining
the bias stress tensor with MD simulations conducted under
constant pressure conditions (N pT statistical ensemble) to
enhance the data-driven exploration of cell parameters and
pressure-induced transitions in bulk materials.

Uncertainty gradients exhibit different magnitudes com-
pared to energy gradients. Thus, re-scaling uncertainty gradi-
ents is necessary to ensure consistent driving toward uncertain
regions. Building upon the approach introduced in Ref. 34,
we implement a re-scaling technique that monitors the mag-
nitudes of both actual and bias forces (alternatively, actual
and bias stresses) over N steps and then computes the ratio
between them. To re-scale bias forces, we use the following
expression

τt = τ0 ×

√

∑
N−1
n=0 ∥Ft−n∆t∥2

2
√

∑
N−1
n=0 ∥∇ri

ut−n∆t∥2
2

. (8)

An equivalent expression is applied for bias stresses.

The re-scaling of uncertainty gradients is reminiscent of the
AdaGrad algorithm,56 which dynamically adjusts the learning
rate (analogous to the biasing strength) based on historical
gradients from previous iterations. While incorporating mo-
mentum through exponential moving averages can improve
the AdaGrad approach, treating all past gradients with equal
weight is essential within the context of this study. Our at-
tempts to damp learning along directions with high curva-
ture (high-frequency oscillations), similar to the Adam op-
timizer,57 did not yield improved performance. We further
find that employing species-dependent biasing strengths for
bias forces, τ → τZi

, with a particular emphasis on damping
biasing of hydrogen atoms, improves the efficiency of biased
MD simulations.

We employ biased MD simulation to generate a candidate
pool for AL, as depicted in Fig. 1 (a). To further enhance
the exploration of the relevant configurational space and im-
prove the computational efficiency of AL, we employ multiple
parallel MD simulations. We expect biased MD simulations
to have relatively short auto-correlation times obtained from
position and uncertainty auto-correlation functions. Short
auto-correlation times imply that the generated candidates
will be less correlated than those generated with unbiased MD
simulations. However, we cannot guarantee the generation of
uncorrelated samples with biased MD simulations throughout
AL, particularly in later AL iterations when the uncertainty
level is reduced. Therefore, we propose to use batch selection
algorithms (see later sections) that select Nbatch > 1 samples
at once. These algorithms enforce the informativeness and di-
versity of the selected atomic configurations and the resulting
training data set.

Gaussian moment neural network

This work uses the Gaussian moment neural network (GM-
NN) approach for modeling interatomic interactions.15, 17

GM-NN employs an artificial NN to map a local atomic en-
vironment Si to the atomic energy Ei (Si,θθθ); see Eq. (1). It
uses a fully-connected feed-forward NN with two hidden lay-
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ers15, 17

yi = 0.1 ·b(3)+
1√
d2

W(3)φ
(

0.1 ·b(2)+

1√
d1

W(2)φ

(

0.1 ·b(1)+
1√
d0

W(1)Gi

))

,

(9)

with W(l+1) ∈ R
dl+1×dl and b(l+1) ∈ R

dl+1 representing the
weights and biases of layer l + 1. In this work, we employ
a NN with d0 = 910 input neurons (corresponding to the
dimension of the input feature vector Gi = Gi (Si)), d1 = d2 =
512 hidden neurons, and a single output neuron, d3 = 1. The
network’s weights W(l+1) are initialized by selecting entries
from a normal distribution with zero mean and unit variance.
The trainable bias vectors b(l+1) are initialized to zero. To
improve the accuracy and convergence of the GM-NN model,
we implement a neural tangent parameterization (factors of
0.1 and 1/

√
dl).58 For the activation function φ , we use the

Swish/SiLU function.59, 60

To aid the training process, we scale and shift the output of
the NN

Ei (Si,θθθ) = c · (ρZi
yi +µZi

), (10)

where the trainable shift parameters µZi
are initialized by

solving a linear regression problem, and the trainable scale
parameters ρZi

are initialized to one. The per-atom RMSE of
the regression solution determines the constant c.17

GM-NN models employ a Gaussian moment (GM) rep-
resentation to encode the invariance of total energy with
respect to translations, rotations, and permutations of the
same species.15 By computing pairwise distance vectors
ri j = ri − r j and then splitting them into radial and angular
components, denoted as ri j = ∥ri j∥2 and r̂i j = ri j/ri j, respec-
tively, we obtain GMs as follows

ΨΨΨi,L,s = ∑
j ̸=i

RZi,Z j ,s (ri j,βββ ) r̂⊗L
i j , (11)

where r̂⊗L
i j = r̂i j ⊗·· ·⊗ r̂i j is the L-fold outer product. The

nonlinear radial functions RZi,Z j ,s (ri j,βββ ) are defined as a sum
of Gaussian functions Φs′ (ri j) (NGauss = 9 for this work)17

RZi,Z j ,s (ri j,βββ ) =
1√

NGauss

NGauss

∑
s′=1

βZi,Z j ,s,s′Φs′ (ri j) . (12)

The factor 1/
√

NGauss impacts the effective learning rate in-
spired by neural tangent parameterization.58 The radial func-
tions are centered at equidistantly spaced grid points ranging
from rmin = 0.5 Å to rc, set to 5.0 Å and 6.0 Å for alanine
dipeptide and MIL-53(Al), respectively. The radial functions
are re-scaled by a cosine cutoff function,11 to ensure a smooth
dependence on the number of atoms within the cutoff sphere.
Chemical information is embedded in the GM representation
through trainable parameters βZi,Z j ,s,s′ , with the index s iter-
ating over the number of independent radial basis functions
(Nbasis = 7 for this work).

Features invariant to rotations, Gi, are obtained by com-
puting full tensor contractions of tensors defined in Eq. (11),
e.g.,15, 17

Gi,s1,s2,s3 = (ΨΨΨi,1,s1)a
(ΨΨΨi,1,s2)b

(
ΨΨΨi,2,s3

)

a,b
, (13)

where we use Einstein notation, i.e., the right-hand sides are
summed over a,b ∈ {1,2,3}. Specific full tensor contrac-
tions are defined by using generating graphs.61 In a practical
implementation, we compute all GMs at once and reduce
the number of invariant features based on the permutational
symmetries of the respective graphs.

All parameters θθθ = {W,b,βββ ,ρρρ,µµµ} of the NN are opti-
mized by minimizing the combined squared loss on train-
ing data Dtrain = (Xtrain,Ytrain), with Xtrain = {S(k)}Ntrain

k=1 and

Ytrain = {Eref
k ,{Fref

i,k}
Nat
i=1,σσσ

ref
k }Ntrain

k=1 ,

L (θθθ ,Dtrain) =
Ntrain

∑
k=1

[

Ce

∥
∥
∥Eref

k −E(S(k),θθθ)
∥
∥
∥

2

2
+

Cf

N
(k)
at

∑
i=1

∥
∥
∥Fref

i,k −Fi

(

S(k),θθθ
)∥
∥
∥

2

2
+

Cs

∥
∥
∥Vkσσσ ref

k −Vkσσσ
(

S(k),θθθ
)∥
∥
∥

2

2

]

.

(14)

We have chosen Ce = 1.0, Cf = 4.0 Å
2
, and Cs = 0.01 to

balance the relative contributions of energies, forces, and
stresses, respectively.

Using AD, we compute atomic forces as negative gradients
of total energy with respect to atomic coordinates

Fi

(

S(k),θθθ
)

=−∇ri
E
(

S(k),θθθ
)

. (15)

Furthermore, we use AD to compute stress tensor, defined
by55

σσσ
(

S(k),θθθ
)

=
1

Vk

∇εεε E
(

S(k),θθθ
)∣
∣
∣
εεε=0

, (16)

where E
(

S(k),θθθ
)

is total energy after a strain deformation

with symmetric tensor εεε ∈ R
3×3, i.e., r̃ = (1+ εεε) · r. As the

stress tensor is symmetric, we use only its upper triangular
part in the loss function. Here, Vk is the volume of the periodic
cell.

We employ the Adam optimizer57 to minimize the loss
function. The respective parameters of the optimizer are β1 =
0.9, β2 = 0.999, and ε = 10−7. Usually, we work with a
mini-batch of 32 molecules. However, smaller mini-batches
were used in the initial AL iterations because the training
data sizes were less than 32. The layer-wise learning rates
are decayed linearly. The initial values are set to 0.03 for the
parameters of the fully connected layers, 0.02 for the trainable
representation, as well as 0.05 and 0.001 for the shift and scale
parameters of atomic energies, respectively. The training is
performed for 1000 training epochs. To prevent overfitting
during training, we employ the early stopping technique.62

All models are trained using PyTorch.45
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Sketched gradient features
We obtain atomic gradient features by computing gradients of
Eq. (1) with respect to the parameters of the fully connected
layers in Eq. (9). Particularly, we make use of the product
structure of atomic gradient features. To obtain the latter, we
re-write the network in Eq. (9) as follows

z
(l+1)
i = W̃(l+1)x̃

(l)
i ∈ R

dl+1 ,

W̃(l+1) =
(

W(l+1),b(l+1)
)

∈ R
dl+1×(dl+1),

x̃
(l)
i =

(
1√
dl

x
(l)
i ,0.1

)⊤
∈ R

dl ,

(17)

where z(l) and x(l) denote the pre- and post-activation vectors
of layer l. Thus, atomic gradient features read

φi(Si) =

(

∂z
(L)
i

∂W̃(1)
, · · · , ∂z

(L)
i

∂W̃(L)

)

=

(

∂z
(L)
i

∂z
(1)
i

⊗ x̃
(0)
i , · · · , ∂z

(L)
i

∂z
(L)
i

⊗ x̃
(L−1)
i

)

.

(18)

To make the calculation of gradient features computation-
ally tractable, we employ the random projections (sketching)
technique,40 as proposed in Refs. 38, 39. For atomic gradient
features φi (Si) ∈ RNfeat and a random matrix U ∈ R

Nrp×Nfeat —
with Nfeat and Nrp representing the number of atomic features
and random projections, respectively—we can define ran-
domly projected atomic gradient features as

φ
rp
i (Si) = Uφi (Si) ∈ R

Nrp . (19)

While a Gaussian sketch could be employed, where the el-
ements of U are drawn from standard normal distributions,
we use a tensor sketching approach that is more runtime and
memory efficient.39 Specifically, denoting the element-wise
or Hadamard product as ⊙, we compute

φ
rp
i (Si) =

L

∑
l=1

(

U
(l)
outφ

(l)
i,out(Si)

)

⊙
(

U
(l−1)
in φ

(l−1)
i,in (Si)

)

, (20)

with φ
(l)
i,out(Si) = ∂z

(L)
i /∂z

(l)
i and φ

(l)
i,in(Si) = x̃

(l)
i . All entries

of U
(l)
in and U

(l)
out are sampled independently from a standard

normal distribution.
For atom-based uncertainties, we can directly use the

sketched atomic gradient features. For (total) uncertainties per
atom, we need to work with a mean φ(S) = ∑

Nat
i=1 φi(Si)/Nat.

Thus, we use that the individual projections (rows of Eq. (20))
are linear in the features and obtain for the (total) gradient
features38

φ rp(S) =
1

Nat

Nat

∑
i=1

L

∑
l=1

(

U
(l)
outφ

(l)
i,out(Si)

)

⊙
(

U
(l−1)
in φ

(l−1)
i,in (Si)

)

,

(21)

given that all of the individual random projections use the
same random matrices.

Ensemble-based uncertainty quantification
The variance of the predictions of individual models in an
ensemble of MLIPs can be used to quantify their uncertainty.
Thus, we define the variance of predicted energy as

u2 =
1
M

M

∑
j=1

∥E j − Ē∥2
2, (22)

where M is the number of models in the ensemble. The
variance of atomic forces reads

u2
i =

1
3M

M

∑
j=1

∥Fi, j − F̄i∥2
2, (23)

Here, Ē and F̄i denote the arithmetic mean of the predictions
from individual models. Our experiments demonstrated that
M = 3 is sufficient to obtain good performance. Using larger
ensembles would make the ensemble-based uncertainty quan-
tification even more computationally inefficient than gradient-
based alternatives.

Batch selection methods
The simplest batch selection method is based on querying
points only by their uncertainty values. Specifically, given
the already selected structures Xbatch from an unlabeled pool
Xpool we select the next point by

S = argmax
S∈Xpool\Xbatch

u(S) , (24)

until Nbatch > 1 structures are selected. In this work, we
use this selection method combined with ensemble-based
uncertainties.

For the posterior-based uncertainty, we can constrain the di-
versity of the selected batch by using the posterior covariance
between structures

Cov
(
S,S′

)
= λ 2φ (S)⊤

(

Φ⊤
trainΦtrain +λ 2I

)−1
φ
(
S′
)
, (25)

with Φtrain = φ (Xtrain). The corresponding method greedily
selects structures, i.e., one structure per iteration, such that the
determinant of the covariance matrix is maximized38, 39, 63

S =

argmax
S∈Xpool\Xbatch

det [Cov(Xbatch ∪{S},Xbatch ∪{S})] . (26)

For the distance-based uncertainty, we ensure the diversity
of the acquired batch by greedily selecting structures with a
maximum distance to all previously selected and training data
points. The respective selection method reads38, 39, 64

S =

argmax
S∈Xpool\Xbatch

min
S′∈Xtrain∪Xbatch

∥
∥
∥φ (S)−φ

(
S′
)
∥
∥
∥

2

2
.

(27)

We also applied this batch selection method to define the most
representative subset of atomic gradient features when calcu-
lating atom-based uncertainty using feature space distances.
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Conformal prediction
Conformal prediction methods offer distribution-free uncer-
tainty quantification with guaranteed finite sample cover-
age,65–69 thus ensuring calibration. Finite sample coverage
can be defined as

P{ytest ∈C (xtest)} ≥ 1−α. (28)

Here, (xtest,ytest) are the newly observed data, while C

defines the prediction set based on previous observations
{(xk,yk)}Ncalibr

k=1 . The user determines the hyper-parameter α
and defines the desired confidence level. CP methods guar-
antee that the prediction set contains the true label with a
probability of almost 1−α .

We employ inductive CP, which comprises the follow-
ing steps:65, 69 (1) A subset of calibration data, sized Ncalibr,
is selected, and the corresponding errors are computed on
this subset. For atomic forces, we employ RMSEs ∆F2

i =
∥Fi −Fref

i ∥2
2/3, while for total energies the respective energy

absolute errors per atom, ∆e = |E −Eref|/Nat, are used. (2)
The uncertainty u(S) is calculated for this subset of data. (3)
The ratio ∆e/u(S) or ∆Fi/u(Si) is computed. (4) Utilizing
quantile regression, the (1−α)(Ncalibr +1)/Ncalibr-th quan-
tile, denoted as s, is determined. (5) This s value is applied
to new observations, resulting in the re-scaled and calibrated
uncertainty, ũ = s ·u.

Test data for alanine dipeptide
The test data set for alanine dipeptide comprises 2000 con-
figurations randomly selected from an MD trajectory. This
trajectory was generated within the ASE simulation package46

by running an MD simulation in the canonical (NV T ) statisti-
cal ensemble using the Langevin thermostat at T = 1200 K.
We have used a time step of 0.5 fs and a total simulation time
of 1 ns. The AMBER ff19SB force field has provided forces,43

as implemented in the TorchMD package using PyTorch.44, 45

The data set effectively covers the relevant configurational
space of alanine dipeptide, representing an upper boundary in
exploring its CVs.

Coverage of collective variable space
To measure how well different methods explore the (bounded)
space of interest, we implement a tree-based weighted recur-
sive partitioning of a d-dimensional Euclidean space, which
is reminiscent of quadtrees70 and matrix-based octrees71 but
allows to choose how many times n to split each dimension.
Thus, the variety of the tree is k = nd . Each node of this
complete k-ary tree encodes a generalized hypercube of d

dimensions, where each side length depends on the bound-
aries of the original space. The root node represents the full
bounded space. A tree of height L has total number of par-
titions equal to (kL+1 − 1)/(k− 1), and each level ℓ has kℓ

nodes. The hyper-parameters we choose in this paper are
n = 2, d = 2 (for the CVs φ and ψ of alanine dipeptide), and
L = 5, for a total of 1365 partitions of the space of interest.

Our proposed surface coverage metric uses this data struc-
ture as a proxy to capture how many space partitions a method

can explore in the least amount of iterations. At the same
time, we need to penalize methods that get stuck in a region
of the space, exploring partitions of smaller volumes, that is,
those represented by nodes at deeper levels in the tree. For
this reason, each node at level ℓ is associated with a reward
(or weight) of 1/kℓ, so each level of the tree has a cumulative
reward of 1. The optimal strategy would be to perform a
breadth-first search of the nodes of this tree, which translates
into observing the largest partitions of unobserved space first.
In addition, partitions that are revisited by the methods give
no additional reward, so there is no gain in getting stuck in a
certain partition. We visually represent the idea of the algo-
rithm in the Supplementary Information for the simple case
of d = 2.

Auto-correlation analysis
We evaluate the performance of uncertainty-biased MD sim-
ulations by investigating the auto-correlation between subse-
quent time frames of the MD trajectory. The auto-correlation
function (ACF) is defined as72

AO (k) =
⟨OiOi+k⟩−⟨Oi⟩2

⟨O2
i ⟩−⟨Oi⟩2

, (29)

where ⟨· · · ⟩ denotes the thermodynamic expectation value, k

is the lag time, and O is an observable, e.g., atomic forces or
atom-based uncertainties. From ACF, we can calculate the
auto-correlation time (ACT) for an MD trajectory of length N

ACTO =
1
2
+

N

∑
k=1

AO (k)

(

1− k

N

)

. (30)

ACT is related to effective sample size (ESS) by

ESSO =
N

2 ·ACTO

. (31)

In this work, we calculate ESS as implemented in Tensor-
Flow73 and use it to estimate the ACT.

Density functional theory calculations
DFT calculations for MIL-53(Al) were performed using the
CP2K simulation package (version 2023.1).47 To ensure con-
sistency with incremental learning experiments,32 we em-
ployed the PBE functional48 with Grimme D3 dispersion
correction.49 A hybrid basis set, combining TZVP Gaussian
basis functions and plane waves, was employed.74 GTH pseu-
dopotentials were used to smoothen the electron density near
the nuclei.75 To ensure the convergence of force and stress
calculations, a plane wave cutoff energy of 1000 Ry was
selected.

Random perturbation of atomic configurations
In this work, we obtain randomly perturbed atomic configura-
tions by adding atomic shifts, denoted as δδδ i, to the original
atomic positions ri

r̃i = ri +δδδ i. (32)
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The components of δδδ i are sampled independently from a
uniform distribution: for alanine dipeptide, the range is be-
tween −0.02 Å and 0.02 Å, and for MIL-53(Al), it is between
−0.08 Å and 0.08 Å. Additionally, for MIL-53(Al), we intro-
duce random perturbations to its periodic cell B using a strain
deformation εεε =

(
A+A⊤)/2, where the components of A

are sampled independently from a uniform distribution be-
tween −0.02 and 0.02. This transformation can be expressed
as

B̃ = B(I+2εεε)1/2 . (33)

The shifted atomic positions are re-scaled according to

˜̃ri = (I+2εεε)1/2
r̃i. (34)

Sine wave with additive random noise

We model large-amplitude volume fluctuations in MIL-53(Al)
induced by the bias stress using a sine wave with period T0

and additive random noise N (t)

Asin
(

2πt

T0

)

+BN (t) ,

where A and B denote the amplitude of the sine wave and
random noise, respectively. In this work, N (t) ∼ N (0,1)
represents random noise following a normal distribution with
zero mean and unit variance. We chose A = 1.0 and B = 0.5
for the blue line in Fig. 7. For the red line, we increase
the noise amplitude to B = 2.0. To represent the volume
fluctuations induced in MIL-53(Al) (see Fig. 7), a sine wave
with the period twice the length of the MD simulation, i.e.,
T0 = 3.2 ns is required.
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